• Title/Summary/Keyword: Gear Meshing Effect

Search Result 11, Processing Time 0.024 seconds

A Coupled Lateral and Torsional FE Rotordynamic Analysis of Speed Increasing Geared Rotor-Bearing System (증속 기어 전동 로터-베어링 시스템의 횡-비틀림 연성 유한요소 로터다이나믹 해석)

  • 이안성;하진웅;최동훈
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.82-88
    • /
    • 2001
  • In a transmission or geared rotor system a coupled phenomenon of lateral and torsional vibrations may occur due to the gear meshing effect. Particularly, in high speed or low vibration and low noise applications of geared rotor systems a coupled rotordynamic analysis is required to precisely predict their dynamic characteristics. In this paper a generalized finite element model of a gear pair element is developed, which actively couples the lateral and torsional vibrations due to the gear meshing effect. In the modeling the generalized forces due to the transmission error. geometrical eccentricities. and unbalances in the gear system are also considered. Then. using the developed gear pair element model a coupled unforced rotordynamic analysis is performed with a prototype 800 RT turbo-chiller rotor-bearing system having a hull-pinion speed increasing gear. Results show that the torsional vibration characteristics experience some changes due to the gear meshing and lateral dynamic coupling effect, but that they have no adverse effect and the lateral ones have no practical changes in an operating speed range.

  • PDF

A Study on the Vibration of 2-Stage Gear System Considering the Change of Gear Meshing Stiffness and Imbalance of Motor (기어 물림부의 스프링강성 변화와 구동기의 불균형을 고려한 2단 기어장치의 진동에 관한 연구)

  • 정태형;이정상;최정락
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.8-14
    • /
    • 2001
  • We develop a method to analyze dynamic behavior off multi-stage gear train system. The example system consists of three shafts supported by ball bearings at the ends of them and two pairs of spur gear set. For exact analysis, the meshing tooth pair of gear set is modeled as spring and damper having time-dependent meshing stiffness and damping. The bearing is modeled as spring. The result of this analysis is compared to that of other model having mean mesh stiffness. The effect of the excitation force by the unbalance off rotor off motor is also analyzed. Finally, the change ova natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

Experimental Investigation of the Effect of Lead Errors on Helical Gear and Bearing Vibration Transmission Characteristics

  • Park, Chan-Il;Lee, Jang-Moo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1395-1403
    • /
    • 2002
  • The characteristics of gear meshing vibration undesgo change as the vibration is transmitted from the gear to the housing. Therefore, vibration transmission characteristics of helical gear systems must be understood before the effective methods of reducing gear noise can be found. In this work, using a helical gear with different lead errors, the gear vibration in the rotational direction and the bearing vibration are measured. The frequency characteristics of gear and bearing vibration are investigated and a comparson is also provided.

A Study on the Flexural and Torsional Vibration of Two Stage Gear System (2단 치차장치의 굽힘과 비틀림 진동에 관한 연구)

  • 정태형;최정락;이정상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.99-104
    • /
    • 1999
  • In this paper, dynamic behavior of a two stage gear train system is analyzed. This system consists of three shafts supported by ball bearing at the ends of them and two pairs of spur gear sets. For exact analysis, the meshing tooth pair of gears is modeled as spring having time-dependent meshing stiffness and damping. The result of this analysis is compared to that of analysis using other model of spring having mean mesh stiffness. The effect of the excitation force by the imbalance of a rotor of a motor on the vibration of a gear train system is also analyzed. Finally, the change of a natural frequency of the whole system due to the change of an angle between three shafts is compared in each case, and from this analysis, the avoiding angle for design is advised.

  • PDF

Nonlinear Analysis of Gear Drive System due to Misalignment (정렬불량에 의한 기어 구동계 비선형 해석)

  • Lee, B.H.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.31-36
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear drive system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. The equation of motion of the gear drive system is modelled using the time-varying gear meshing stiffness, bearing nonlinear stiffness, and bearing pre-load due to the housing deformation. Numerical analysis lot the gear drive system show the result of misalignment effect - sub-harmonic component, bearing pre-load effect, and another nonlinear phenomenon. And the numerical analysis are verified by the experimental result.

  • PDF

지형오차와 치형수정을 고려한 헬리컬치차의 물림진동

  • 정태형;명재형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.803-806
    • /
    • 1995
  • The vibration and nosic of gears is causeed by manufacting error,alignment error in assembly, and thr meshing stiffness of gears which changes periodically as the meshing of teeth process. On a pair of power transmission helical gears with profile error, the relation between the characteristics of gear vibration and the profile error type have been investigated by simulating the vibrational acceleration level and calculating the natural frequency. The results show that the profile error decrease the natural frequency by reducing the tool stiffness and that the concave error type increase the vibrationsl level. And this paper describes the effect of the tip relief on the vibrational acceleration level which a pair of helical gears with concave error generates.

  • PDF

An Experimental Study on Tooth-Meshing Frequency Components in Noise/Vibration of a Gearbox Under Operational Conditions (기어 박스 구동시 회전수 변화에 따른 이 맞물림 주파수 소음/진동 성분의 증폭에 대한 실험적 연구)

  • Lee, Seong-Hun;Kim, Kwang-Joon;Ha, Jae-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1096-1101
    • /
    • 2000
  • In machine tools, often a gearbox is installed to control the rotating speed of spindle, which sometimes generates problems of noise and vibration due to errors in tooth-meshing. In this study, the characteristics of, noise and vibration of given gearbox for a machine tool are analyzed experimentally. From the measurement, it was observed that the tooth-meshing component of the sound pressure level from the gearbox took its maximum at a specific operational speed. Therefore, the main content of this study is to investigate the reason why the above mentioned characteristics are observed. By investigating the natural frequencies of the components in gearbox, it was found that the natural frequencies of the rotating gear-shaft and gearbox for twisting mode were closely related to the first and second peak of sound pressure levels respectively. Thereform, in this study, those relations were identified by the impact test of rotating gear-shaft and-gearbox. In addition, we inserted the rubber between housing and bed, and analyze the effect of the rubber insertion on noise reduction by Operational Deflection Shapes.

  • PDF

Effect of Offset of Bearing on Radiation Sound and Vibration in the Gear System (기어장치에서 베어링의 설치위치가 소음특성에 미치는 영향)

  • 류성기;이중희
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.34-39
    • /
    • 1998
  • This paper describes a evaluation method of sound power radiated from the vibrating faces of a single stage gear box using sound radiation. The vibration caused from meshing gears is transmitted to the gear box faces through shafts and bearings. A Boundary Element Method (BEM) is developed to calculate the sound power radiated from the faces with their velocity response which is based on the Building Block Approach (BBA). Radiation efficiency as well as the sound intensity on the surface of the gear box is also calculated. Sound power of the gear box is larger in the case that bearings have offset to the wall of the gear box than that bearings are on the center of the gear box. The sound power increases with the augmentation of the offset.

  • PDF

A Fuzzy Controller Design for Compensating Backlash at Robot Joint (로봇 관절의 백래쉬 보상을 위한 퍼지 제어기 설계)

  • Ahn, Won-Ki;Kim, Byung-Yoon;Kim, Jin-Hwan;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.192-194
    • /
    • 2006
  • Backlash between meshing gear teeth causes impact, tracking error and undesired vibrations. It is usually minimized by precision gear, spring-loaded anti-backlash gears and precise mechanical adjustment. Although these techniques can help to reduce the backlash gap, its cost is relatively high and performance is limited. And the classic controller is insufficient to control the dynamic system with nonlinearity. For these reason, a fuzzy controller is proposed to compensate the backlash effect at a robot system. The input variables are position error and change in error. The output variable can be defined by input voltage of motor. The performance of a fuzzy controller is verified by comparing with a PID controller. The results show that the undesired vibration is suppressed. And then diminishing the position error is observed.

  • PDF

Study on Effect of Micro Tooth Shape Modification on Power Transmission Characteristics based on the Driving Gear of Rotating Machining Unit (마이크로 치형수정이 선회가공 유닛 구동기어의 동력전달 특성에 미치는 영향에 관한 연구)

  • Jang, Jeong-Hwan;Qin, Zhen;Kim, Dong-Seon;Wu, Yu-Ting;Lyu, Sung Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.91-97
    • /
    • 2019
  • Rotating machining unit is a revolutionary product that can process worm shaft or spiral shaft with fast and precise, a rotary type cutting tool, which is attached to automatic lathe and processes spiral groove on outer circumference of round bar. In this work, a study on micro tooth shape modification method of driving gear train in the rotating machining unit was presented. To observe the effect on power transmission characteristics of the driving gear pair, visualize the gear meshing condition and the load distribution on the gear teeth by using the professional gear train analysis program RomaxDesigner. By comparing the repeated analysis results, the effect of micro tooth shape modification on power transmission characteristics on driving gear can be summarized. The optimized gears were fabricated and measured by precision tester as a validation in this research.