• Title/Summary/Keyword: Gear Mechanism

Search Result 171, Processing Time 0.03 seconds

A study on the efficient simulation methods for an automatic power transmission system applying dynamic torque constraint (동적 구속조건을 적용한 자동변속장치의 효과적인 시뮬레이션방법에 관한 연구)

  • Jeong, Heon-Sul;Lee, Kyo-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.3
    • /
    • pp.504-518
    • /
    • 1998
  • Degree-Of-Freedom(DOF) for most power transmission system varies according to the operation status which consists of friction elements to change the power flow or to adjust the speed ratio such as clutches, brakes or one-way clutches. To simulate the dynamic characteristics of automatic power transmission system which is a typical example of such a variable DOF systems, many sets of governing equations and complicated phase decision routines are necessary. In this paper dynamic constraint theorem is derived explaining the torque transmission characteristics during the clutch engagement process and a robust stable algorithm is developed describing this phase transition phenomenon effectively by introducing the concept of direct torque and virtual damping. Finally, applying this algorithm to a passenger car automatic transmission gear consisting of several friction elements, an efficient simulation methods for such a complex system will be suggested that is very simple and systematic.

Development of the Underwater Cleaning Robot Platform for a Higher Efficiency (고효율 수중청소로봇 플랫폼 기술 개발)

  • Suh, Jin-Ho;Lee, Jung-Woo;Kim, Jong-Geol;Choi, Young-Ho;Choi, Il-Seop
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.74-84
    • /
    • 2017
  • This paper presents the development of the underwater cleaning robot platform for a higher efficiency in manufacturing industry. Human operators directly go into the cistern and clean sludge after drainage of the water so far. It is sometimes dangerous because of the harmful chemical materials from the product making process. In addition, it takes long time for water drainage and supplying it back. However, the robot cleaning operation does not need to drain water so that it could be applied to the sludge cleaning work at any time without the plant pause. Moreover, it can prevent the safety accidents because human operators are not necessary to enter directly the sludge cisterns. This paper shows the performance of cleaning work that can be applied in the industrial field through the design and development of underwater cleaning robot platform. And these results demonstrate that the developed underwater cleaning robot has great possibilities to clean other industrial water cisterns.

Torsional Stiffness Analysis of a Cycloid Reducer using Hertz Contact Theory (Hertz 접촉이론을 이용한 사이클로이드 감속기의 비틀림 강성해석)

  • Lee S.Y.;Park J.S;Ahn H.J.;Han D.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.816-821
    • /
    • 2005
  • The cycloid reducer has very high efficiency, high ratios, high stiffness and small size, in comparison with a conventional gear mechanism, which makes it an attractive candidate for limited space and precision application such as industrial robot. There are several publications on analysis and design of the cycloid reducer, however, it was assumed that the contact stiffness of pin rollers and cycloid disk is constant regardless of their contact geometry. Moreover, the torsional stiffness of the cycloid reducer couldn't be calculated due to the assumption. In this paper, we present a new procedure of calculating torsional stiffness of the cycloid reducer using Hertz contact theory. First, conventional force analysis of the cycloid reducer is briefly reviewed. Then, iterative numerical calculation procedure of the contact stiffness is proposed based on the Hertz contact theory where the contact stiffness depends on the contact force. In addition, total torsional stiffness of the cycloid reducer is estimated considering its rolling element bearing stiffness. The torsional stiffness of the cycloid reducer is dominated by the rolling element bearing stiffness since the contact stiffness of the cycloid disk is too large.

  • PDF

A Study on Design of Barrel Cam Using Relative Velocity (상대속도를 이용한 바렐 캠의 설계에 관한 연구)

  • Shin, Joong-Ho;Kim, Sung-Won;Kang, Dong-Woo;Yoon, Ho-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

Development of a New Multi-Fingered Robot Hand Using Ultrasonic Motors and Its Control System (초음파 모터를 이용한 다지 로봇 손 및 제어시스템 개발)

  • Kim, Byoung-Ho;Oh, Sang-Rok;You, Bum-Jae;Suh, Il-Hong;Choi, Hyouk-Ryeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.327-332
    • /
    • 2000
  • In this paper, a new multi-fingered robot hand using ultrasonic motors and its control system are developed. The developed robot hand has four fingers and fifteen articulated joints. The distal joint of each finger is directly driven by ultrasonic motor and all joints except the distal joint has low transmission gear mechanism with the motor. The developed robot hand has several advantages in size compared to a hand using conventional DC motors, and in performance compared to a hand using tendons to drive joints. A VME-bus based hand control system and ultrasonic motor driver are also developed. The performance of the hand is confirmed by using the developed control system in real-time.

  • PDF

Double Actuator Unit based on the Planetary Gear Train Capable of Position/Force Control (위치/힘 제어가 가능한 유성기어 기반의 더블 액츄에이터 유닛)

  • Kim, Byeong-Sang;Park, Jung-Jun;Song, Jae-Bok;Kim, Hong-Seok
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 2006
  • Control of a robot manipulator in contact with the environment is usually conducted by the direct feedback control using a force-torque sensor or the indirect impedance control. In these methods, however, the control algorithms become complicated and the performance of position and force control cannot be improved because of the mechanical properties of the passive components. To cope with such problems, redundant actuation has been used to enhance the performance of position control and force control. In this research, a Double Actuator Unit (DAU) is proposed, with which the force control algorithm can be simplified and can make the robot ensure the safety during the external collision. The DAU is composed of two actuators; one controls the position and the other modulates the joint stiffness. Using this unit, it is possible to independently control the position and stiffness. The DAU based on the planetary gears is investigated in this paper. Performance using the DAU is also verified by various experiments. It is shown that the manipulator using this mechanism provides better safety during the impact with the environment by reducing the joint stiffness appropriately on detecting the collision of a manipulator.

  • PDF

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

The Optimal Design of Wear Pads for the Final Reduction Drive in Tactical Vehicles (전술차량용 종감속기 마모패드 최적설계에 관한 연구)

  • Shin, Hunyong;Lee, Yong-Jun;Ryu, Jungmin;Kang, Taewoo;Oh, Dae-san;Sim, Jungwook;Shin, Minsu;Son, Kwon-il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.54-59
    • /
    • 2019
  • The final reduction drive in tactical vehicles has a wear-pad that helps to maintain adequate end floating when the hub assay operates. The input axis and sun gear move repeatedly with the axis when tactical vehicle is operating. The hub assay is designed so that the wear pads won't seize during operation. Seizure of the wear pads during operation results in oil leakage. In our study, the fault mechanism was analyzed to prevent the seizure of the wear pads and an optimal design for the shape and material of the wear-pad was explored. We then observed the changes in temperature, shape, and material of several important parts.

DEVELOPMENT OF A CONTINUOUSLY VARIABLE-SPEED TRANSMISSION FOR AGRICULTURAL TRACTOR

  • Kim, H. J.;Kim, E. H.;K. H. Ryu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.162-169
    • /
    • 2000
  • This study was carried out to develop a continuously variable-speed transmission(CVT) for agricultural tractor. A full-toroidal CVT mechanism with four discs and six rollers was selected as a device for changing speed ratio continuously. In the step of system layout design, the sizes of roller cylinders and end-load cylinder, which were critical factors for controlling the variator, were designed. Also the control pressure range was designed to limit the contact pressure of variator. In order to make the maximum speed of vehicle as 30km/h, the planetary gear and the six pairs of gears were designed. Also the hydraulic clutch, silent chain, hydraulic manifold and electronic controller were designed. After the design, a prototype with CVT controller was developed and tested. The speed of vehicle was changed continuously to the speed set by driver and the settling time was about 0.52 second at the step-response test (reduction ratio of variator 2.0 to 1.0), which was acceptable as a response time for working with tractor.

  • PDF

A Study on Behaviour of Giant Pacific Octopus, Parotopus dofleini to Single Line Hook for Hook Design (외줄낚시에 대한 대문어의 행동과 낚시형상 설계)

  • Park, Seong-Wook;Lee, Jeong-Woo;Yang, Yong-Su;Seo, Du-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The single line hook fishery for giant pacific octopus, Parotopus dofleini is one of the important in coastal Kangwon-do of Korea, where was caught an average of 4,000 ton during the period of 1996~2000. The fishing gear is consisted of a single buoy line, a buoy and a hook. In this study, the responses of giant pacific octopus to single line hook gear were examined in an experimental tank using a video camera in order to know hooking mechanism and improve hook. Giant pacific octopus tend to envelop the bait with their arms by rush or slowly swimming towards it. When they rush to the bait, they show much feeding behaviour as withdrawing after enveloping the bait using two arms. But when they approach with slowly swimming to bait, they show feeding behaviour as stopping after enveloping the bait using one arm. and then, the highly hooking rate appeared more often in the case of latter then former. The average feeding time on a sardine, giant pacific octopus and pork fat showed the range of 1 to 30 min, 10 to 50 min, and 50 min to over 1 hour, respectively. This indicates that it takes longer time for giant pacific octopus to eat the tough meat than the soft meat. The performance concerned with hooking showed that the 'B' type hook with a short shank was more favorable than the 'A' type hook with a long shank. However, the 'A' type hook has the advantage of easy dropping out caught octopus, compared to the 'B' type.