• Title/Summary/Keyword: Geant4 코드

Search Result 18, Processing Time 0.024 seconds

Monte Carlo Study Using GEANT4 of Cyberknife Stereotactic Radiosurgery System (GEANT4를 이용한 정위적 사이버나이프 선량분포의 계산과 측정에 관한 연구)

  • Lee, Chung-Il;Shin, Jae-Won;Shin, Hun-Joo;Jung, Jae-Yong;Kim, Yon-Lae;Min, Jeong-Hwan;Hong, Seung-Woo;Chung, Su-Mi;Jung, Won-Gyun;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.192-200
    • /
    • 2010
  • Cyberknife with small field size is more difficult and complex for dosimetry compared with conventional radiotherapy due to electronic disequilibrium, steep dose gradients and spectrum change of photons and electrons. The purpose of this study demonstrate the usefulness of Geant4 as verification tool of measurement dose for delivering accurate dose by comparing measurement data using the diode detector with results by Geant4 simulation. The development of Monte Carlo Model for Cyberknife was done through the two-step process. In the first step, the treatment head was simulated and Bremsstrahlung spectrum was calculated. Secondly, percent depth dose (PDD) was calculated for six cones with different size, i.e., 5 mm, 10 mm, 20 mm, 30 mm, 50 mm and 60 mm in the model of water phantom. The relative output factor was calculated about 12 fields from 5 mm to 60 mm and then it compared with measurement data by the diode detector. The beam profiles and depth profiles were calculated about different six cones and about each depth of 1.5 cm, 10 cm and 20 cm, respectively. The results about PDD were shown the error the less than 2% which means acceptable in clinical setting. For comparison of relative output factors, the difference was less than 3% in the cones lager than 7.5 mm. However, there was the difference of 6.91% in the 5 mm cone. Although beam profiles were shown the difference less than 2% in the cones larger than 20 mm, there was the error less than 3.5% in the cones smaller than 20 mm. From results, we could demonstrate the usefulness of Geant4 as dose verification tool.

A Study on the Assessment of Source-term for PWR Primary System Using MonteCarlo Code (MonteCarlo 코드를 이용한 PWR 일차 계통 선원항 평가에 관한 연구)

  • Song, Jong Soon;Lee, Sang Heon;Shin, Seung Su
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.3
    • /
    • pp.331-337
    • /
    • 2018
  • The decommissioning of nuclear power plants is generally executed in five steps, including preparation, decontamination, cutting/demolition, waste disposal and environmental restoration. So, for efficient decommissioning of nuclear power plants, worker safety, effects compared to cost, minimization of waste, possibility of reuse, etc., shall be considered. Worker safety and measurement technology shall be secured to exert optimal efficiency of nuclear power plant decommissioning work, for which accurate measurement technology for systems and devices is necessary. Typical In-Situ methods for decommissioning of nuclear plants are CZT, Gamma Camera and ISOCS. This study used ISOCS, which can be applied during the decommissioning of a nuclear power plant site without collecting representative samples, to take measurements of the S/G Water Chamber. To validate the measurement values, Microshield and the GEANT4 code was used as the actual method were used for modeling, respectively. The comparison showed a difference of $1.0{\times}10^1Bq$, which indicates that it will be possible to reduce errors due to the influence of radiation in the natural environment and the precision of modeling. Based on the research results of this paper, accuracy and reliability of measurement values will be analyzed and the applicability of the direct measurement method during the decommissioning of NPPs will be assessed.

Development of Monte Carlo Simulation Code for the Dose Calculation of the Stereotactic Radiosurgery (뇌 정위 방사선수술의 선량 계산을 위한 몬테카를로 시뮬레이션 코드 개발)

  • Kang, Jeongku;Lee, Dong Joon
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2012
  • The Geant4 based Monte Carlo code for the application of stereotactic radiosurgery was developed. The probability density function and cumulative density function to determine the incident photon energy were calculated from pre-calculated energy spectrum for the linac by multiplying the weighting factors corresponding to the energy bins. The messenger class to transfer the various MLC fields generated by the planning system was used. The rotation matrix of rotateX and rotateY were used for simulating gantry and table rotation respectively. We construct accelerator world and phantom world in the main world coordinate to rotate accelerator and phantom world independently. We used dicomHandler class object to convert from the dicom binary file to the text file which contains the matrix number, pixel size, pixel's HU, bit size, padding value and high bits order. We reconstruct this class object to work fine. We also reconstruct the PrimaryGeneratorAction class to speed up the calculation time. because of the huge calculation time we discard search process of the ThitsMap and used direct access method from the first to the last element to produce the result files.

Comparative Studies on Absorbed Dose by Geant4-based Simulation Using DICOM File and Gafchromic EBT2 Film (DICOM 파일을 사용한 Geant4 시뮬레이션과 Gafchromic EBT2 필름에 의한 인체 내 흡수선량 비교 연구)

  • Mo, Eun-Hui;Lee, Sang-Ho;Ahn, Sung-Hwan;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.48-53
    • /
    • 2013
  • Monte Carlo method has been known as the most accurate method for calculating absorbed dose in the human body, and an anthropomorphic phantom has been mainly used as a method of simulating internal organs for using such a calculation method. However, various efforts are made to extract data on several internal organs in the human body directly from CT DICOM files in recent Monte Carlo calculation using Geant4 code and to use by converting them into the geometry necessary for simulation. Such a function makes it possible to calculate the internal absorbed dose accurately while duplicating the actual human anatomical structure. Thus, this study calculated the absorbed dose in the human body by using Geant4 associating with DICOM files, and aimed to confirm the usefulness by compare the result with the measured dose using a Gafchromic EBT2 film. This study compared the dose calculated using simulation and the measured dose in beam central axis using the EBT2 film. The results showed that the range of difference was an average of 3.75% except for a build-up region, in which the dose rapidly changed from skin surface to the depth of maximum dose. In addition, this study made it easy to confirm the target absorbed dose by internal organ and organ through the output of the calculated value of dose by CT slice and the dose value of each voxel in each slice. Thus, the method that outputs dose value by slice and voxel through the use of CT DICOM, which is actual image data of human body, instead of the anthropomorphic phantom enables accurate dose calculations of various regions. Therefore, it is considered that it will be useful for dose calculation of radiotherapy planning system in the future. Moreover, it is applicable for currently-used several energy ranges in current use, so it is considered that it will be effectively used in order to check the radiation absorbed dose in the human body.

Monte Carlo Simulation of a Varian 21EX Clinac 6 MV Photon Beam Characteristics Using GATE6 (GATE6를 이용한 Varian 21EX Clinac 선형가속기의 6 MV X-선 특성모사)

  • An, Jung-Su;Lee, Chang-Lae;Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.39 no.4
    • /
    • pp.571-575
    • /
    • 2016
  • Monte Carlo simulations are widely used as the most accurate technique for dose calculation in radiation therapy. In this paper, the GATE6(Geant4 Application for Tomographic Emission ver.6) code was employed to calculate the dosimetric performance of the photon beams from a linear accelerator(LINAC). The treatment head of a Varian 21EX Clinac was modeled including the major geometric structures within the beam path such as a target, a primary collimator, a flattening filter, a ion chamber, and jaws. The 6 MV photon spectra were characterized in a standard $10{\times}10cm^2$ field at 100 cm source-to-surface distance(SSD) and subsequent dose estimations were made in a water phantom. The measurements of percentage depth dose and dose profiles were performed with 3D water phantom and the simulated data was compared to measured reference data. The simulated results agreed very well with the measured data. It has been found that the GATE6 code is an effective tool for dose optimization in radiotherapy applications.

Characterization Study of Detector Module with Crystal Array for Small Animal PET: Monte Carlo Simulation (소동물 전용 양전자방출단층시스템의 섬광체 배열에 따른 특성 평가: 몬테칼로 시뮬레이션 연구)

  • Baek, Cheol-Ha
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.350-356
    • /
    • 2015
  • The aim of this study is to perform simulations to design the detector module with crystal array by Monte Carlo simulation. For this purpose, a small animal PET scanner, employing module with 1~8 crystal array discrimination scheme, was designed. The proposed scanner has an inner diameter of 100 mm with detector modules in crystal array. Each module is composed of a 5.0 mm LSO crystal with a $2.0{\times}2.0mm^2$ sensitive area with a pitch 2.1 mm and 10.0 mm thickness. The LSO crystals are attached to the SiPM which has a dimension of $2.0{\times}2.0mm^2$. The detector module with crystal array of the designed PET detector was simulated using the Monte Carlo code GATE(Geant4 Application for Tomographic Emission). The detector is enough compensation for the loss of data in sinogram due to gaps between modules. The results showed that the high sensitivity and effectively reduced the problem about the missing data were greatly improved by using the detector module with 1 crystal array.

Optimization of Parallel-Hole Collimator for Small Gamma Camera Based on Pixellated Crystal Array (배열형 섬광결정을 이용한 소형 감마카메라의 평행구멍형 조준기 최적화 연구)

  • Chung, Yong-Hyun;Beak, Cheol-Ha;Lee, Seung-Jae;Park, Jin-Hyung
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.291-297
    • /
    • 2008
  • The purpose of this study is to optimize a parallel-hole collimator for small gamma camera having the pixellated crystal array and evaluate the effect of crystal-collimator misalignment on the image quality using a simulation tool GATE (Geant4 Application for Tomographic Emission). The spatial resolution and sensitivity were measured for the various size of hexagonal-hole and matched square-hole collimators with a Tc-99m point source and the uniformity of flood image was estimated as a function of the angle between crystal array and collimator by misalignment. The results showed that the spatial resolution and sensitivity were greatly improved by using the matched collimator and the uniformity was reduced by crystal-collimator misalignment.

  • PDF

Coded Aperture Gamma Camera for Thyroid Imaging: Monte Carlo Simulation (갑상선 영상 획득을 위한 부호화 구경 감마카메라: 몬테칼로 시뮬레이션 연구)

  • Beak, Cheol-Ha;Lee, Seung-Jae;Chung, Yong-Hyun
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.247-255
    • /
    • 2008
  • A coded aperture camera has been developed to improve the signal-to-noise ratio (SNR) while keeping the spatial resolution of a pinhole gamma camera. The purpose of this study was to optimize a coded aperture camera and to evaluate its possibility for thyroid imaging by Monte Carlo simulation. A clinical gamma camera, a pinhole collimator with 1.0 mm hole diameter, and a $79{\times}79$ modified uniformly redundant array (MURA) mask were designed using GATE (Geant4 Application for Tomographic Emission). The penetration ratio, spatial resolution, integral uniformity and signal-to-noise ratio (SNR) were simulated and evaluated as a function of the mask thickness. The spatial resolution of the coded aperture camera was consistent with the various mask thickness, SNR showed a maximum value at 1.2 mm mask thickness and integral uniformity was improved by increasing mask thickness. Compare to the pinhole gamma camera, the coded aperture camera showed improved SNR by a factor of 30 while keeping almost the same spatial resolution. In this simulation study, the results indicated that high spatial resolution and ultra-high SNR of the thyroid imaging are feasible using a coded aperture camera.

  • PDF