• 제목/요약/키워드: Gaussian weights

검색결과 79건 처리시간 0.019초

퍼지추론 기반 다항식 RBF 뉴럴 네트워크의 설계 및 최적화 (The Design of Polynomial RBF Neural Network by Means of Fuzzy Inference System and Its Optimization)

  • 백진열;박병준;오성권
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.399-406
    • /
    • 2009
  • In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.

환경에 적응적인 얼굴 추적 및 인식 방법 (A New Face Tracking and Recognition Method Adapted to the Environment)

  • 주명호;강행봉
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.385-394
    • /
    • 2009
  • 사람의 얼굴은 강체(Rigid object)가 아니기 때문에 얼굴을 추적하거나 인식하는 일은 쉽지 않다. 특히 얼굴의 포즈나 주변 조명의 변화에 따른 입력 영상의 차이는 얼굴 인식을 어렵게 하는 주된 원인이다. 본 논문에서는 비디오 영상으로부터 얼굴을 추적하고 인식할 때 발생하는 이 두 가지의 문제를 해결하기 위한 프레임웍과 전처리 방법을 제안한다. 얼굴 포즈의 변화에도 효과적으로 얼굴을 추적 및 인식하기 위해 먼저 학습 영상으로부터 주성분 분석법(Principal Component Analysis)을 이용하여 각 얼굴 포즈마다 하나의 독립된 가우시안 분포를 추정하고 이를 이용하여 각 사람마다 가우시안 혼합 모델(Gaussian Mixture Model)을 구성한다. 본 논문에서는 서로 다른 조명 상태를 가진 얼굴 영상을 처리하기 위해 먼저 입력된 얼굴 영상을 SSR(Single Scale Retinex) 모델을 이용하여 반사율(Reflectance)과 조도(Illuminance)로 분해한다. 반사율은 사전 정의된 범위 안에서 히스토그램 평활화를 수행함으로써 재조정되고 조도는 조명의 변화를 포함하고 있지 않은 영상들으로부터 학습된 매니폴드 모델로 다시 근사된다. 이 두 특징을 결합함으로써 실내 환경이나 실외 환경에서 촬영된 영상에서 효율적으로 얼굴을 추적 및 인식한다. 비디오 기반의 영상으로부터 보다 효율적으로 얼굴을 추적하기 위해 본 논문에서는 구성된 모델의 가중치를 각 프레임마다 이전 프레임의 추적 결과에 의해 EM 알고리즘을 이용하여 갱신함으로써 비디오 영상내의 연속적으로 변화하는 얼굴 포즈를 추정하였다. 본 논문에서 제안된 방법은 실내에서의 다양한 조명환경과 실외의 여러 장소에서 획득한 실험 영상을 이용하여 기존에 연구되어 온 다른 방법에 비해 우수한 성능을 보였다.

연속 음성 인식 시스템을 위한 향상된 결정 트리 기반 상태 공유 (Improved Decision Tree-Based State Tying In Continuous Speech Recognition System)

  • 김동화;;;김형순;김영호
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.49-56
    • /
    • 1999
  • 결정 트리 기반 상태 공유 방법은 HMM을 사용하는 많은 연속 음성 인식 시스템에서 강인하고 정확한 문맥 종속 음향 모델링 뿐만 아니라 훈련 중에는 나타나지 않은 모델들의 합성을 위하여 널리 사용되고 있다. 음성 결정 트리를 구성하기 위한 표준적인 방법은 단일 가우시안 트라이폰 모델을 이용한 1계층 프루닝 만을 사용하고 있다. 본 논문에서는 더욱 정교한 음향 모델링을 통하여 인식 성능 향상을 도모하기 위하여 새로운 2가지 접근 방법 즉, 2계층 결정 트리와 복수 혼합 결정 트리를 제안한다. 2계층 결정 트리는 상태 공유와 혼합 가중치 공유를 위하여 2계층 프루닝을 수행하며, 두 번째 계층을 사용하여 공유 상태들도 음성 문맥의 유사도에 따라서 서로 다른 가중치들을 사용할 수 있다. 두 번째 제안된 방법 에서는 훈련 과정 즉, 혼합 분할 및 재추정 과정과 함께 음성 결정 트리가 계속 갱신되어 진다. 복수 혼합 결정 트리를 구성하기 위하여 단일 가우시안 뿐만 아니라 복수 혼합 가우시안 모델이 함께 사용된다. 제안된 방법들을 이용하여 BN-96과 WSJ5k 데이터를 사용한 연속 음성 인식 실험을 수행한 결과, 표준 결정 트리를 사용한 시스템과 비교하여 공유 상태의 개수를 비슷하게 유지하면서 단어 오인식률을 줄일 수 있었다.

  • PDF

Terrain Slope Estimation Methods Using the Least Squares Approach for Terrain Referenced Navigation

  • Mok, Sung-Hoon;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권1호
    • /
    • pp.85-90
    • /
    • 2013
  • This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain map over the region, determined by position error covariance. It is shown that the method could provide a more accurate solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after determining which of the filter properties is more significant at each mission.

Directional Particle Filter Using Online Threshold Adaptation for Vehicle Tracking

  • Yildirim, Mustafa Eren;Salman, Yucel Batu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.710-726
    • /
    • 2018
  • This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.

적응 L-필터의 수렴성 해석 (Convergence Analysis of Adaptive L-Filter)

  • 김수용;배성호
    • 한국멀티미디어학회논문지
    • /
    • 제12권9호
    • /
    • pp.1210-1216
    • /
    • 2009
  • 본 논문에서는 순환최소순위(RLR) L-필터의 수렴성을 해석하였다. RLR L-필터는 순서통계필터로서 입력의 크기순서에 따른 가중치를 필터계수로 한다. 또한 RLR L-필터는 비선형 적응 필터로서 필터계수의 갱신을 위하여 RLR 알고리즘을 이용한다. RLR 알고리즘은 로버스트 통계학의 순위추정에 기초한 비선형 적응 알고리즘이다. 본 논문에서는 가변적인 스텝 크기를 적용하여 평균 및 평균제곱의 견지에서 수렴성을 해석하였다. RLRL-필터는 잡음의 분포함수가 두꺼운 꼬리 분포인 임펄스 잡음에 가까울수록 메디안 필터의 형태로 적응하며 가우시안 잡음의 경우 평균 필터의 형태로 적응한다.

  • PDF

퍼지 규칙 최적화를 위한 유전자 알고리즘 (A genetic algorithm for generating optimal fuzzy rules)

  • 임창균;정영민;김응곤
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.767-778
    • /
    • 2003
  • 이 논문은 유전자 알고리즘을 이용한 최적의 퍼지 규칙을 만드는 방법을 제시한다. 퍼지 규칙은 첫 번째 단계에서 학습 데이터를 이용해 생성된다. 이 단계에서 퍼지 c-Means 군집화 알고리즘과 군집 유효성을 사용해 구조를 결정하고 퍼지 규칙 수가 되는 군집 수를 결정한다. 첫 번째 단계에서 구조가 결정되면 퍼지규칙의 매개변수들은 유전자 알고리즘을 이용해서 조율된다. 또한, 비대칭 가우시안 소속 함수를 위해 분산 매개변수는 좌ㆍ우값을 따로 관리하여 조율한다. 이 방법은 가중치와 분산 공간에서 유전자 알고리즘을 사용함으로서 전역 최소 쪽으로 수렴하도록 한다.

Fuzzy-ART Basis Equalizer for Satellite Nonlinear Channel

  • Lee, Jung-Sik;Hwang, Jae-Jeong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권1호
    • /
    • pp.43-48
    • /
    • 2002
  • This paper discusses the application of fuzzy-ARTMAP neural network to compensate the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is the class of ART(adaptive resonance theory) architectures designed fur supervised loaming. It has capabilities not fecund in other neural network approaches, that includes a small number of parameters, no requirements fur the choice of initial weights, automatic increase of hidden units, and capability of adding new data without retraining previously trained data. By a match tracking process with vigilance parameter, fuzzy-ARTMAP neural network achieves a minimax teaming rule that minimizes predictive error and maximizes generalization. Thus, the system automatically leans a minimal number of recognition categories, or hidden units, to meet accuracy criteria. As a input-converting process for implementing fuzzy-ARTMAP equalizer, the sigmoid function is chosen to convert actual channel output to the proper input values of fuzzy-ARTMAP. Simulation studies are performed over satellite nonlinear channels. QPSK signals with Gaussian noise are generated at random from Volterra model. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP equalizer.

웨이브릿 변환을 이용한 계층적 스테레오 정합 (A Hierarchical Stereo Matching Algorithm Using Wavelet Representation)

  • 김영석;이준재;하영호
    • 전자공학회논문지B
    • /
    • 제31B권8호
    • /
    • pp.74-86
    • /
    • 1994
  • In this paper a hierarchical stereo matching algorithm to obtain the disparity in wavelet transformed domain by using locally adaptive window and weights is proposed. The pyramidal structure obtained by wavelet transform is used to solve the loss of information which the conventional Gaussian or Laplacian pyramid have. The wavelet transformed images are decomposed into the blurred image the horizontal edges the vertical edges and the diagonal edges. The similarity between each wavelet channel of left and right image determines the relative importance of each primitive and make the algorithm perform the area-based and feature-based matching adaptively. The wavelet transform can extract the features that have the dense resolution as well as can avoid the duplication or loss of information. Meanwhile the variable window that needs to obtain precise and stable estimation of correspondense is decided adaptively from the disparities estimated in coarse resolution and LL(low-low) channel of wavelet transformed stereo image. Also a new relaxation algorithm that can reduce the false match without the blurring of the disparity edge is proposed. The experimental results for various images show that the proposed algorithm has good perfpormance even if the images used in experiments have the unfavorable conditions.

  • PDF

균등거리 기준 조명 맵과 색 상관성을 이용한 조명 색도 추정 (Estimation of Illuminant Chromaticity by Equivalent Distance Reference Illumination Map and Color Correlation)

  • 김정엽
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권6호
    • /
    • pp.267-274
    • /
    • 2023
  • 본 논문에서는 입력 영상에 대한 촬영 장면의 조명 색도를 추정하는 방법을 제안한다. 조명 기준영역을 이용하여 입력영상의 촬영 장면에 가장 근접한 조명 색도를 추정한다. 기존의 방법은 일정한 수의 기준조명 정보를 이용한다. 입력 영상으로부터 화소의 색도분포 정보와 기준 조명에 대한 미리 준비된 색도 집합을 대조하여 겹치는 면적이 가장 큰 기준 조명을 해당 입력 영상에 대한 장면 조명으로 간주한다. 겹치는 면적을 계산하는 과정에서 각 기준 조명에 대한 가중치를 가우시안 분포 형태로 적용하였으나, 분산 값에 대하여 명확한 기준을 제시하지 못하였다. 제안한 방법은 주어진 기준조명으로부터 독립적인 기준색도 영역을 추출하고, 입력영상의 모든 화소에 대하여 RGB 칼라좌표계의 r-g 색도 평면에서의 특징치를 계산한 다음, 독립적인 색도영역과 입력영상으로부터의 특징치를 이용하여 유사도를 평가한다. 유사도가 가장 높게 나타나는 조명을 해당 영상의 조명 색도 성분으로 추정하였다. 데이터베이스의 영상과 기준조명 색도를 이용한 성능평가에서 제안한 방법은 기존의 기본 방법에 비하여 평균 60% 정도의 개선을 보였고, 기존의 가우시안 분산 값이 0.1인 경우에 비하여 53% 내외의 개선 성능을 보였다.