In this study, Polynomial Radial Basis Function Neural Network(pRBFNN) based on Fuzzy Inference System is designed and its parameters such as learning rate, momentum coefficient, and distributed weight (width of RBF) are optimized by means of Particle Swarm Optimization. The proposed model can be expressed as three functional module that consists of condition part, conclusion part, and inference part in the viewpoint of fuzzy rule formed in 'If-then'. In the condition part of pRBFNN as a fuzzy rule, input space is partitioned by defining kernel functions (RBFs). Here, the structure of kernel functions, namely, RBF is generated from HCM clustering algorithm. We use Gaussian type and Inverse multiquadratic type as a RBF. Besides these types of RBF, Conic RBF is also proposed and used as a kernel function. Also, in order to reflect the characteristic of dataset when partitioning input space, we consider the width of RBF defined by standard deviation of dataset. In the conclusion part, the connection weights of pRBFNN are represented as a polynomial which is the extended structure of the general RBF neural network with constant as a connection weights. Finally, the output of model is decided by the fuzzy inference of the inference part of pRBFNN. In order to evaluate the proposed model, nonlinear function with 2 inputs, waster water dataset and gas furnace time series dataset are used and the results of pRBFNN are compared with some previous models. Approximation as well as generalization abilities are discussed with these results.
사람의 얼굴은 강체(Rigid object)가 아니기 때문에 얼굴을 추적하거나 인식하는 일은 쉽지 않다. 특히 얼굴의 포즈나 주변 조명의 변화에 따른 입력 영상의 차이는 얼굴 인식을 어렵게 하는 주된 원인이다. 본 논문에서는 비디오 영상으로부터 얼굴을 추적하고 인식할 때 발생하는 이 두 가지의 문제를 해결하기 위한 프레임웍과 전처리 방법을 제안한다. 얼굴 포즈의 변화에도 효과적으로 얼굴을 추적 및 인식하기 위해 먼저 학습 영상으로부터 주성분 분석법(Principal Component Analysis)을 이용하여 각 얼굴 포즈마다 하나의 독립된 가우시안 분포를 추정하고 이를 이용하여 각 사람마다 가우시안 혼합 모델(Gaussian Mixture Model)을 구성한다. 본 논문에서는 서로 다른 조명 상태를 가진 얼굴 영상을 처리하기 위해 먼저 입력된 얼굴 영상을 SSR(Single Scale Retinex) 모델을 이용하여 반사율(Reflectance)과 조도(Illuminance)로 분해한다. 반사율은 사전 정의된 범위 안에서 히스토그램 평활화를 수행함으로써 재조정되고 조도는 조명의 변화를 포함하고 있지 않은 영상들으로부터 학습된 매니폴드 모델로 다시 근사된다. 이 두 특징을 결합함으로써 실내 환경이나 실외 환경에서 촬영된 영상에서 효율적으로 얼굴을 추적 및 인식한다. 비디오 기반의 영상으로부터 보다 효율적으로 얼굴을 추적하기 위해 본 논문에서는 구성된 모델의 가중치를 각 프레임마다 이전 프레임의 추적 결과에 의해 EM 알고리즘을 이용하여 갱신함으로써 비디오 영상내의 연속적으로 변화하는 얼굴 포즈를 추정하였다. 본 논문에서 제안된 방법은 실내에서의 다양한 조명환경과 실외의 여러 장소에서 획득한 실험 영상을 이용하여 기존에 연구되어 온 다른 방법에 비해 우수한 성능을 보였다.
결정 트리 기반 상태 공유 방법은 HMM을 사용하는 많은 연속 음성 인식 시스템에서 강인하고 정확한 문맥 종속 음향 모델링 뿐만 아니라 훈련 중에는 나타나지 않은 모델들의 합성을 위하여 널리 사용되고 있다. 음성 결정 트리를 구성하기 위한 표준적인 방법은 단일 가우시안 트라이폰 모델을 이용한 1계층 프루닝 만을 사용하고 있다. 본 논문에서는 더욱 정교한 음향 모델링을 통하여 인식 성능 향상을 도모하기 위하여 새로운 2가지 접근 방법 즉, 2계층 결정 트리와 복수 혼합 결정 트리를 제안한다. 2계층 결정 트리는 상태 공유와 혼합 가중치 공유를 위하여 2계층 프루닝을 수행하며, 두 번째 계층을 사용하여 공유 상태들도 음성 문맥의 유사도에 따라서 서로 다른 가중치들을 사용할 수 있다. 두 번째 제안된 방법 에서는 훈련 과정 즉, 혼합 분할 및 재추정 과정과 함께 음성 결정 트리가 계속 갱신되어 진다. 복수 혼합 결정 트리를 구성하기 위하여 단일 가우시안 뿐만 아니라 복수 혼합 가우시안 모델이 함께 사용된다. 제안된 방법들을 이용하여 BN-96과 WSJ5k 데이터를 사용한 연속 음성 인식 실험을 수행한 결과, 표준 결정 트리를 사용한 시스템과 비교하여 공유 상태의 개수를 비슷하게 유지하면서 단어 오인식률을 줄일 수 있었다.
International Journal of Aeronautical and Space Sciences
/
제14권1호
/
pp.85-90
/
2013
This paper presents a study on terrain referenced navigation (TRN). The extended Kalman filter (EKF) is adopted as a filter method. A Jacobian matrix of measurement equations in the EKF consists of terrain slope terms, and accurate slope estimation is essential to keep filter stability. Two slope estimation methods are proposed in this study. Both methods are based on the least-squares approach. One is planar regression searching the best plane, in the least-squares sense, representing the terrain map over the region, determined by position error covariance. It is shown that the method could provide a more accurate solution than the previously developed linear regression approach, which uses lines rather than a plane in the least-squares measure. The other proposed method is weighted planar regression. Additional weights formed by Gaussian pdf are multiplied in the planar regression, to reflect the actual pdf of the position estimate of EKF. Monte Carlo simulations are conducted, to compare the performance between the previous and two proposed methods, by analyzing the filter properties of divergence probability and convergence speed. It is expected that one of the slope estimation methods could be implemented, after determining which of the filter properties is more significant at each mission.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권2호
/
pp.710-726
/
2018
This paper presents an extended particle filter to increase the accuracy and decrease the computation load of vehicle tracking. Particle filter has been the subject of extensive interest in video-based tracking which is capable of solving nonlinear and non-Gaussian problems. However, there still exist problems such as preventing unnecessary particle consumption, reducing the computational burden, and increasing the accuracy. We aim to increase the accuracy without an increase in computation load. In proposed method, we calculate the direction angle of the target vehicle. The angular difference between the direction of the target vehicle and each particle of the particle filter is observed. Particles are filtered and weighted, based on their angular difference. Particles with angular difference greater than a threshold is eliminated and the remaining are stored with greater weights in order to increase their probability for state estimation. Threshold value is very critical for performance. Thus, instead of having a constant threshold value, proposed algorithm updates it online. The first advantage of our algorithm is that it prevents the system from failures caused by insufficient amount of particles. Second advantage is to reduce the risk of using unnecessary number of particles in tracking which causes computation load. Proposed algorithm is compared against camshift, direction-based particle filter and condensation algorithms. Results show that the proposed algorithm outperforms the other methods in terms of accuracy, tracking duration and particle consumption.
본 논문에서는 순환최소순위(RLR) L-필터의 수렴성을 해석하였다. RLR L-필터는 순서통계필터로서 입력의 크기순서에 따른 가중치를 필터계수로 한다. 또한 RLR L-필터는 비선형 적응 필터로서 필터계수의 갱신을 위하여 RLR 알고리즘을 이용한다. RLR 알고리즘은 로버스트 통계학의 순위추정에 기초한 비선형 적응 알고리즘이다. 본 논문에서는 가변적인 스텝 크기를 적용하여 평균 및 평균제곱의 견지에서 수렴성을 해석하였다. RLRL-필터는 잡음의 분포함수가 두꺼운 꼬리 분포인 임펄스 잡음에 가까울수록 메디안 필터의 형태로 적응하며 가우시안 잡음의 경우 평균 필터의 형태로 적응한다.
이 논문은 유전자 알고리즘을 이용한 최적의 퍼지 규칙을 만드는 방법을 제시한다. 퍼지 규칙은 첫 번째 단계에서 학습 데이터를 이용해 생성된다. 이 단계에서 퍼지 c-Means 군집화 알고리즘과 군집 유효성을 사용해 구조를 결정하고 퍼지 규칙 수가 되는 군집 수를 결정한다. 첫 번째 단계에서 구조가 결정되면 퍼지규칙의 매개변수들은 유전자 알고리즘을 이용해서 조율된다. 또한, 비대칭 가우시안 소속 함수를 위해 분산 매개변수는 좌ㆍ우값을 따로 관리하여 조율한다. 이 방법은 가중치와 분산 공간에서 유전자 알고리즘을 사용함으로서 전역 최소 쪽으로 수렴하도록 한다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제2권1호
/
pp.43-48
/
2002
This paper discusses the application of fuzzy-ARTMAP neural network to compensate the nonlinearity of satellite communication channel. The fuzzy-ARTMAP is the class of ART(adaptive resonance theory) architectures designed fur supervised loaming. It has capabilities not fecund in other neural network approaches, that includes a small number of parameters, no requirements fur the choice of initial weights, automatic increase of hidden units, and capability of adding new data without retraining previously trained data. By a match tracking process with vigilance parameter, fuzzy-ARTMAP neural network achieves a minimax teaming rule that minimizes predictive error and maximizes generalization. Thus, the system automatically leans a minimal number of recognition categories, or hidden units, to meet accuracy criteria. As a input-converting process for implementing fuzzy-ARTMAP equalizer, the sigmoid function is chosen to convert actual channel output to the proper input values of fuzzy-ARTMAP. Simulation studies are performed over satellite nonlinear channels. QPSK signals with Gaussian noise are generated at random from Volterra model. The performance of proposed fuzzy-ARTMAP equalizer is compared with MLP equalizer.
In this paper a hierarchical stereo matching algorithm to obtain the disparity in wavelet transformed domain by using locally adaptive window and weights is proposed. The pyramidal structure obtained by wavelet transform is used to solve the loss of information which the conventional Gaussian or Laplacian pyramid have. The wavelet transformed images are decomposed into the blurred image the horizontal edges the vertical edges and the diagonal edges. The similarity between each wavelet channel of left and right image determines the relative importance of each primitive and make the algorithm perform the area-based and feature-based matching adaptively. The wavelet transform can extract the features that have the dense resolution as well as can avoid the duplication or loss of information. Meanwhile the variable window that needs to obtain precise and stable estimation of correspondense is decided adaptively from the disparities estimated in coarse resolution and LL(low-low) channel of wavelet transformed stereo image. Also a new relaxation algorithm that can reduce the false match without the blurring of the disparity edge is proposed. The experimental results for various images show that the proposed algorithm has good perfpormance even if the images used in experiments have the unfavorable conditions.
본 논문에서는 입력 영상에 대한 촬영 장면의 조명 색도를 추정하는 방법을 제안한다. 조명 기준영역을 이용하여 입력영상의 촬영 장면에 가장 근접한 조명 색도를 추정한다. 기존의 방법은 일정한 수의 기준조명 정보를 이용한다. 입력 영상으로부터 화소의 색도분포 정보와 기준 조명에 대한 미리 준비된 색도 집합을 대조하여 겹치는 면적이 가장 큰 기준 조명을 해당 입력 영상에 대한 장면 조명으로 간주한다. 겹치는 면적을 계산하는 과정에서 각 기준 조명에 대한 가중치를 가우시안 분포 형태로 적용하였으나, 분산 값에 대하여 명확한 기준을 제시하지 못하였다. 제안한 방법은 주어진 기준조명으로부터 독립적인 기준색도 영역을 추출하고, 입력영상의 모든 화소에 대하여 RGB 칼라좌표계의 r-g 색도 평면에서의 특징치를 계산한 다음, 독립적인 색도영역과 입력영상으로부터의 특징치를 이용하여 유사도를 평가한다. 유사도가 가장 높게 나타나는 조명을 해당 영상의 조명 색도 성분으로 추정하였다. 데이터베이스의 영상과 기준조명 색도를 이용한 성능평가에서 제안한 방법은 기존의 기본 방법에 비하여 평균 60% 정도의 개선을 보였고, 기존의 가우시안 분산 값이 0.1인 경우에 비하여 53% 내외의 개선 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.