• Title/Summary/Keyword: Gaussian process model

Search Result 241, Processing Time 0.027 seconds

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

Sound System Analysis for Health Smart Home

  • CASTELLI Eric;ISTRATE Dan;NGUYEN Cong-Phuong
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.237-243
    • /
    • 2004
  • A multichannel smart sound sensor capable to detect and identify sound events in noisy conditions is presented in this paper. Sound information extraction is a complex task and the main difficulty consists is the extraction of high­level information from an one-dimensional signal. The input of smart sound sensor is composed of data collected by 5 microphones and its output data is sent through a network. For a real time working purpose, the sound analysis is divided in three steps: sound event detection for each sound channel, fusion between simultaneously events and sound identification. The event detection module find impulsive signals in the noise and extracts them from the signal flow. Our smart sensor must be capable to identify impulsive signals but also speech presence too, in a noisy environment. The classification module is launched in a parallel task on the channel chosen by data fusion process. It looks to identify the event sound between seven predefined sound classes and uses a Gaussian Mixture Model (GMM) method. Mel Frequency Cepstral Coefficients are used in combination with new ones like zero crossing rate, centroid and roll-off point. This smart sound sensor is a part of a medical telemonitoring project with the aim of detecting serious accidents.

  • PDF

3D Mesh Watermarking Using CEGI (CEGI를 이용한 3D 메쉬 워터마킹)

  • 이석환;김태수;김승진;권기룡;이건일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4C
    • /
    • pp.472-484
    • /
    • 2004
  • We proposed 3D mesh watermarking algorithm using CEGI distribution. In the proposed algorithm, we divide a 3D mesh of VRML data into 6 patches using distance measure and embed the same watermark bits into the normal vector direction of meshes that mapped into the cells of each patch that have the large magnitude of complex weight of CEGI. The watermark can be extracted based on the known center point of each patch and order information of cell. In an attacked model by affine transformation, we accomplish the realignment process before the extraction of the watermark. Experiment results exhibited the proposed algorithm is robust by extracting watermark bit for geometrical and topological deformed models.

Modal Parameter Estimations of Wind-Excited Structures based on a Rational Polynomial Approximation Method (유리분수함수 근사법에 기반한 풍하중을 받는 구조물의 동특성 추정)

  • Kim, Sang-Bum;Lee, Wan-Soo;Yun, Chung-Bang
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.287-292
    • /
    • 2005
  • This paper presents a rational polynomial approximation method to estimate modal parameters of wind excited structures using incomplete noisy measurements of structural responses and partial measurements of wind velocities only. A stochastic model of the excitation wind force acting on the structure is estimated from partial measurements of wind velocities. Then the transfer functions of the structure are approximated as rational polynomial functions. From the poles and zeros of the estimated rational polynomial functions, the modal parameters, such as natural frequencies, damping ratios, and mode shapes are extracted. Since the frequency characteristics of wind forces acting on structures can be assumed as a smooth Gaussian process especially around the natural frequencies of the structures according to the central limit theorem (Brillinger, 1969; Yaglom, 1987), the estimated modal parameters are robust and reliable with respect to the assumed stochastic input models. To verify the proposed method, the modal parameters of a TV transmission tower excited by gust wind are estimated. Comparison study with the results of other researchers shows the efficacy of the suggested method.

  • PDF

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

Prediction Study of Heat-Affected Zone (HAZ) Properties in ERW Pipes using Hardness Distribution and Reverse Engineering Techniques (경도분포 및 역설계 기법을 활용한 ERW 파이프 열영향부(HAZ) 물성 예측 연구)

  • S. Lee;D. Hyun;S. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.321-328
    • /
    • 2023
  • To ensure driver safety, high-strength steel pipes are utilized in the chassis and internal structures design of automobiles. ERW(electric resistance welding) pipes, fabricated through welding at joints using electrical resistance, form a Heat-Affected Zone (HAZ) during the welding process. Due to characteristics such as increased hardness and reduced ductility compared to the base material, HAZ poses challenges in finite element analysis (FEA) for pipe shapes. In this study, for FEA considering HAZ properties, mechanical properties were measured through uniaxial tensile testing and digital image correlation (DIC) techniques after specimen fabrication. These measurements were validated using reverse engineering methods. Furthermore, hardness measurements and gaussian functions were employed to ascertain the hardness distribution within the HAZ, serving as a basis for subdividing the HAZ and modeling the pipe shape. To validate the effectiveness of the HAZ modeling approach, models were interpreted incorporating only base material properties and models incorporating average-calculated HAZ properties. Comparative analysis was performed, revealing that the model subdividing the HAZ based on hardness measurements closely approximated experimental values. This validation offered a methodology for HAZ modeling in FEA.

Improved VFM Method for High Accuracy Flight Simulation (고정밀 비행 시뮬레이션을 위한 개선 VFM 기법 연구)

  • Lee, Chiho;Kim, Mukyeom;Lee, Jae-Lyun;Jeon, Kwon-Su;Tyan, Maxim;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.709-719
    • /
    • 2021
  • Recent progress in analysis and flight simulation methods enables wider use of a virtual certification and reduces number of certification flight tests. Aerodynamic database (AeroDB) is one of the most important components for the flight simulation. It is composed of aerodynamic coefficients at a range of flight conditions and control deflections. This paper proposes and efficient method for construction of AeroDB that combines Gaussian Process based Variable Fidelity Modeling with adaptive sampling algorithm. A case study of virtual certification of a F-16 fighter is presented. Four AeroDB were constructed using different number and distribution of high-fidelity data points. The constructed database is then used to simulate gliding, short pitch, and roll response. Compliance with certification regulations is then checked. The case study demonstrates that the proposed method can significantly reduce number of high-fidelity data points while maintaining high accuracy of the simulation.

Landslide susceptibility assessment using feature selection-based machine learning models

  • Liu, Lei-Lei;Yang, Can;Wang, Xiao-Mi
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-16
    • /
    • 2021
  • Machine learning models have been widely used for landslide susceptibility assessment (LSA) in recent years. The large number of inputs or conditioning factors for these models, however, can reduce the computation efficiency and increase the difficulty in collecting data. Feature selection is a good tool to address this problem by selecting the most important features among all factors to reduce the size of the input variables. However, two important questions need to be solved: (1) how do feature selection methods affect the performance of machine learning models? and (2) which feature selection method is the most suitable for a given machine learning model? This paper aims to address these two questions by comparing the predictive performance of 13 feature selection-based machine learning (FS-ML) models and 5 ordinary machine learning models on LSA. First, five commonly used machine learning models (i.e., logistic regression, support vector machine, artificial neural network, Gaussian process and random forest) and six typical feature selection methods in the literature are adopted to constitute the proposed models. Then, fifteen conditioning factors are chosen as input variables and 1,017 landslides are used as recorded data. Next, feature selection methods are used to obtain the importance of the conditioning factors to create feature subsets, based on which 13 FS-ML models are constructed. For each of the machine learning models, a best optimized FS-ML model is selected according to the area under curve value. Finally, five optimal FS-ML models are obtained and applied to the LSA of the studied area. The predictive abilities of the FS-ML models on LSA are verified and compared through the receive operating characteristic curve and statistical indicators such as sensitivity, specificity and accuracy. The results showed that different feature selection methods have different effects on the performance of LSA machine learning models. FS-ML models generally outperform the ordinary machine learning models. The best FS-ML model is the recursive feature elimination (RFE) optimized RF, and RFE is an optimal method for feature selection.

Meta-heuristic optimization algorithms for prediction of fly-rock in the blasting operation of open-pit mines

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Rashidi, Shima;Mohammed, Adil Hussein
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.489-502
    • /
    • 2022
  • In this study, a Gaussian process regression (GPR) model as well as six GPR-based metaheuristic optimization models, including GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, and GPR-SSO, were developed to predict fly-rock distance in the blasting operation of open pit mines. These models included GPR-SCA, GPR-SSO, GPR-MVO, and GPR. In the models that were obtained from the Soungun copper mine in Iran, a total of 300 datasets were used. These datasets included six input parameters and one output parameter (fly-rock). In order to conduct the assessment of the prediction outcomes, many statistical evaluation indices were used. In the end, it was determined that the performance prediction of the ML models to predict the fly-rock from high to low is GPR-PSO, GPR-GWO, GPR-MVO, GPR-MFO, GPR-SCA, GPR-SSO, and GPR with ranking scores of 66, 60, 54, 46, 43, 38, and 30 (for 5-fold method), respectively. These scores correspond in conclusion, the GPR-PSO model generated the most accurate findings, hence it was suggested that this model be used to forecast the fly-rock. In addition, the mutual information test, also known as MIT, was used in order to investigate the influence that each input parameter had on the fly-rock. In the end, it was determined that the stemming (T) parameter was the most effective of all the parameters on the fly-rock.