• 제목/요약/키워드: Gaussian distribution model

검색결과 352건 처리시간 0.029초

생체의 가우스빔 광분포모델 (A Gaussian Beam Light Distribution Model of the Biological Tissue)

  • 조진호;하영호;이건일
    • 대한전자공학회논문지
    • /
    • 제25권6호
    • /
    • pp.654-662
    • /
    • 1988
  • A simple and useful model of light distribution for the biologhical tissue to the Gaussian beam is proposed. This model assumes that the incident Gaussian beam broadens into two Gaussian beams, travelling in the opposite directions as the result of both isotropic scattering and absorption in the tissue. With this assumption, two-dimensional light intensity of each flux as well as the equations of both absorption and scattering have been derived, and the validity of modeling has been confirmed experimentally. Consequently, the results paved a way for easy evaluation of the light distribution in the biological tissue.

  • PDF

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • 제10권2호
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

Active Shape 모델과 Gaussian Mixture 모델을 이용한 입술 인식 ((Lip Recognition Using Active Shape Model and Gaussian Mixture Model))

  • 장경식;이임건
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권5_6호
    • /
    • pp.454-460
    • /
    • 2003
  • 이 논문은 입술의 형태를 효과적으로 인식하는 방법을 제안하였다. 입술은 PDM(Point Distribution Model)을 기반으로 점들의 집합으로 표현하였다. 주성분 분석법을 적용하여 입술 모델을 구하고 모델에서 사용하는 형태계수의 분포를 GMM(Gaussian Mixture Model)을 이용하여 구하였다. 이 과정에서 계수를 정하기 위하여 EM(Expectation Maximization) 알고리듬을 사용하였다. 입술 경계선 모델은 입술을 구성하는 각 점과 주변 영역에서의 화소간 변화를 이용하여 구성하였으며 입술 탐색시 사용되었다. 여러 영상을 대상으로 실험한 결과 좋은 결과를 얻었다.

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • 제43권1호
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

Non-parametric Density Estimation with Application to Face Tracking on Mobile Robot

  • Feng, Xiongfeng;Kubik, K.Bogunia
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.49.1-49
    • /
    • 2001
  • The skin color model is a very important concept in face detection, face recognition and face tracking. Usually, this model is obtained by estimating a probability density function of skin color distribution. In many cases, it is assumed that the underlying density function follows a Gaussian distribution. In this paper, a new method for non-parametric estimation of the probability density function, by using feed-forward neural network, is used to estimate the underlying skin color model. By using this method, the resulting skin color model is better than the Gaussian estimation and substantially approaches the real distribution. Applications to face detection and face ...

  • PDF

형태계수의 Mixture Model을 이용한 입술 형태 표현과 입술 경계선 추출 (Lip Shape Representation and Lip Boundary Detection Using Mixture Model of Shape)

  • 장경식;이임건
    • 한국멀티미디어학회논문지
    • /
    • 제7권11호
    • /
    • pp.1531-1539
    • /
    • 2004
  • 본 논문은 입술의 경계선을 효과적으로 추출하는 방법을 제안하였다. 입술 형태는 PDM(Point Distribution Model)과 주성분 분석법을 이용하여 표현하고 입술 경계선은 GLDM(Gray Level Distribution Model)을 기반으로 표현하였다 입술 경계선 추출은 모델에 대한 입력영상의 정확도에 대한 목적함수를 최적화하는 문제로 단순화하였으며, 최적화를 위해 다운힐 심플렉스(Down Hill Simplex) 알고리즘을 이용하였다. 탐색과정에서 지역 최소점으로 수렴하는 문제를 해결하기 위하여 입술 형태 모델의 형태계수를 GMM(Gaussian Mixture Model)을 이용하여 표현하였다. 형태계수에 대한 GMM을 이용하여 입술의 대략적인 형태를 찾고, 이때 사용된 mixture 성분을 이용하여 탐색과정에서 입술의 형태를 조정함으로써 지역 최소점에 수렴하여 입술의 정확한 위치를 찾지 못하는 문제점을 해결하였다. 여러 영상을 대상으로 실험하여 좋은 결과를 얻었다.

  • PDF

Estimating Suitable Probability Distribution Function for Multimodal Traffic Distribution Function

  • Yoo, Sang-Lok;Jeong, Jae-Yong;Yim, Jeong-Bin
    • 해양환경안전학회지
    • /
    • 제21권3호
    • /
    • pp.253-258
    • /
    • 2015
  • The purpose of this study is to find suitable probability distribution function of complex distribution data like multimodal. Normal distribution is broadly used to assume probability distribution function. However, complex distribution data like multimodal are very hard to be estimated by using normal distribution function only, and there might be errors when other distribution functions including normal distribution function are used. In this study, we experimented to find fit probability distribution function in multimodal area, by using AIS(Automatic Identification System) observation data gathered in Mokpo port for a year of 2013. By using chi-squared statistic, gaussian mixture model(GMM) is the fittest model rather than other distribution functions, such as extreme value, generalized extreme value, logistic, and normal distribution. GMM was found to the fit model regard to multimodal data of maritime traffic flow distribution. Probability density function for collision probability and traffic flow distribution will be calculated much precisely in the future.

Asymptotic Gaussian Structures in a Critical Generalized Curie-Wiss Mean Field Model : Large Deviation Approach

  • Kim, Chi-Yong;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • 제25권4호
    • /
    • pp.515-527
    • /
    • 1996
  • It has been known for mean field models that the limiting distribution reflecting the asymptotic behavior of the system is non-Gaussian at the critical state. Recently, however, Papangelow showed for the critical Curie-Weiss mean field model that there exist Gaussian structures in the asymptotic behavior of the total magnetization. We construct Gaussian structures existing in the internal fluctuation of the system for the critical case of a generalized Curie-Weiss mean field model.

  • PDF

미등록어 거절 알고리즘에서 가우시안 모델 최적화를 이용한 신뢰도 정규화 향상 (In Out-of Vocabulary Rejection Algorithm by Measure of Normalized improvement using Optimization of Gaussian Model Confidence)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권12호
    • /
    • pp.125-132
    • /
    • 2010
  • 어휘 인식에서는 인식 학습 시 나타나지 않는 미 출현 트라이 폰이 존재하며, 이들 시스템에서는 모델 파라미터들의 초기 추정치를 생성하지 못하고 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 인하여 가우시안 모델의 정확성을 확보하지 못하게 된다. 이를 개선하기 위하여 확률 분포를 이용한 모델 파라미터의 가우시안 모델 최적화 방법을 제안한다. 확률 분포의 가우시안 모델을 최적화하여 가우시안 모델의 정확성을 제공하고, 음소 단위로 데이터의 탐색을 지원하여 신뢰도가 향상되었다. 제안된 방법의 성능 평가를 위하여 실제 다양한 미등록어가 관측될 수 있는 대상으로 실험을 수행하였으며 본 연구에서 제안한 정규화 신뢰도를 이용한 미등록어 거절 알고리즘이 기존의 방법들에 비하여 평균 1.7%의 성능향상을 나타내었다.

Meta-Gaussian 방법을 이용한 강우-유출 모형에서의 불확실성 산정 (Evaluation of the Uncertainties in Rainfall-Runoff Model Using Meta-Gaussian Approach)

  • 김병식;김보경;권현한
    • 한국습지학회지
    • /
    • 제11권1호
    • /
    • pp.49-64
    • /
    • 2009
  • 홍수나 가뭄 등 극한 사상을 예측하여 재해에 대비하거나 또는 수자원을 효율적으로 관리, 배분하기 위하여 강우-유출 모형이 이용되고 있다. 그러나 많은 수문학자들은 강우-유출 모형이 가질 수밖에 없는 불확실성에 대하여 언급하였다. 실제 유역에 내린 강우는 증발과 증산, 차단, 침투 등 여러 과정을 거쳐 유출로 이어지는데, 모형에서는 이러한 복잡한 물리적 과정을 단순화하여 표현하였으므로 불확실성이 반드시 존재할 수밖에 없는 것이다. 따라서 모형으로부터의 모의 결과를 신뢰할 수 있는지를 정량적으로 판단하는 과정이 이루어져야 한다. 본 논문에서는 현재까지 강우-유출 모형의 불확실성을 평가한 선행 연구 중 Montanari와 Brath(2004)가 제시한 Meta-Gaussian 기법을 이용하여 강우-유출 모형 모의 결과에 대한 불확실성을 검토하였다. 이 기법은 모형 오차의 확률 분포형으로부터 신뢰구간의 상한계와 하한계를 추정하는 방법으로 수문모형의 전역적 불확실성(Global Uncertainty)을 정량화할 수 있다. 본 논문에서는 동일한 강우사상에 대한 물리적 기반의 분포형 모형인 $Vflo^{TM}$ 모형과 개념적 준 분포형 모형인 HEC-HMS 모형으로부터 모의된 유출량을 Meta-Gaussian 기법을 적용하여 불확실성을 분석하였다.

  • PDF