• 제목/요약/키워드: Gaussian Basis function

검색결과 74건 처리시간 0.025초

피드백 오차 학습 신경회로망을 이용한 하드디스크 서보정보 기록 방식 (Servo-Writing Method using Feedback Error Learning Neural Networks for HDD)

  • 김수환;정정주;심준석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.699-701
    • /
    • 2004
  • This paper proposes the algorithm of servo- writing based on feedback error learning neural networks. The controller consists of feedback controller using PID and feedforward controller using gaussian radial basis function network. Because the RBFNs are trained by on-line rule, the controller has adaptation capability. The performance of the proposed controller is compared to that of conventional PID controller. Proposed algorithm shows better performance than PID controller.

  • PDF

시간 변화에 따른 사전 정보와 이득 함수를 적용한 NMF 기반 음성 향상 기법 (A NMF-Based Speech Enhancement Method Using a Prior Time Varying Information and Gain Function)

  • 권기수;진유광;배수현;김남수
    • 한국통신학회논문지
    • /
    • 제38C권6호
    • /
    • pp.503-511
    • /
    • 2013
  • 본 논문은 비음수 행렬 인수분해(NMF)를 이용한 음성향상 기법을 다루고 있다. 음성과 잡음에서 적절한 훈련을 통해 각각의 기저(basis) 행렬을 구하고 이 행렬들을 이용하여 두 음원을 분리 하는 것이다. 이 때 훈련으로부터, 시간 흐름에 따른 기저 사용량의 변화량을 각기 독립적인 가우시안 모델들로 만들고, 이를 이용하여 매 시간 프레임에서 주어진 모델들에 일정 가중치만큼 가까워지는 방향으로 최적화를 수행하였다. 또한 매 시간 얻은 NMF의 부호화 행렬의 결과를 이전 시간 프레임의 부호화 행렬 값과 평활화(smoothing) 과정을 수행하였다. 향상 과정에서는 Log-spectral Amplitude를 이용하여 이득(gain) 함수를 구하였다. 실험 결과에서는 PESQ 값을 지표로 사용하였고, 기존의 NMF를 이용한 음성 향상 보다 이 두 과정을 적용한 방법이 뛰어남을 확인 했다.

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • 제19권4호
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

COHERENT SATE REPRESENTATION AND UNITARITY CONDITION IN WHITE NOISE CALCULUS

  • Obata, Nobuaki
    • 대한수학회지
    • /
    • 제38권2호
    • /
    • pp.297-309
    • /
    • 2001
  • White noise distribution theory over the complex Gaussian space is established on the basis of the recently developed white noise operator theory. Unitarity condition for a white noise operator is discussed by means of the operator symbol and complex Gaussian integration. Concerning the overcompleteness of the exponential vectors, a coherent sate representation of a white noise function is uniquely specified from the diagonal coherent state representation of the associated multiplication operator.

  • PDF

지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발 (A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization)

  • 정진아;박은규
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권3호
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

A COMPARISON OF RADIAL BASIS FUNCTIONS IN APPLICATIONS TO IMAGE MORPHING

  • Jin, Bo-Ram;Lee, Yong-Hae
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제17권4호
    • /
    • pp.321-332
    • /
    • 2010
  • In this paper, we experiment image warping and morphing. In image warping, we use radial basis functions : Thin Plate Spline, Multi-quadratic and Gaussian. Then we obtain the fact that Thin Plate Spline interpolation of the displacement with reverse mapping is the efficient means of image warping. Reflecting the result of image warping, we generate two examples of image morphing.

가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선 (Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights)

  • 한수환;박성대;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

An Elliptical Basis Function Network for Classification of Remote-Sensing Images

  • Luo, Jian-Cheng;Chen, Qiu-Xiao;Zheng, Jiang;Leung, Yee;Ma, Jiang-Hong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1326-1328
    • /
    • 2003
  • An elliptical basis function (EBF) network is proposed in this study for the classification of remotely sensed images. Though similar in structure, the EBF network differs from the well-known radial basis function (RBF) network by incorporating full covariance matrices and uses the expectation-maximization (EM) algorithm to estimate the basis functions. Since remotely sensed data often take on mixture -density distributions in the feature space, the proposed network not only possesses the advantage of the RBF mechanism but also utilizes the EM algorithm to compute the maximum likelihood estimates of the mean vectors and covariance matrices of a Gaussian mixture distribution in the training phase. Experimental results show that the EM-based EBF network is faster in training, more accurate, and simpler in structure.

  • PDF

빅 데이터 처리를 위한 증분형 FCM 기반 순환 RBF Neural Networks 패턴 분류기 설계 (Design of Incremental FCM-based Recursive RBF Neural Networks Pattern Classifier for Big Data Processing)

  • 이승철;오성권
    • 전기학회논문지
    • /
    • 제65권6호
    • /
    • pp.1070-1079
    • /
    • 2016
  • In this paper, the design of recursive radial basis function neural networks based on incremental fuzzy c-means is introduced for processing the big data. Radial basis function neural networks consist of condition, conclusion and inference phase. Gaussian function is generally used as the activation function of the condition phase, but in this study, incremental fuzzy clustering is considered for the activation function of radial basis function neural networks, which could effectively do big data processing. In the conclusion phase, the connection weights of networks are given as the linear function. And then the connection weights are calculated by recursive least square estimation. In the inference phase, a final output is obtained by fuzzy inference method. Machine Learning datasets are employed to demonstrate the superiority of the proposed classifier, and their results are described from the viewpoint of the algorithm complexity and performance index.

Terrain Geometry from Monocular Image Sequences

  • McKenzie, Alexander;Vendrovsky, Eugene;Noh, Jun-Yong
    • Journal of Computing Science and Engineering
    • /
    • 제2권1호
    • /
    • pp.98-108
    • /
    • 2008
  • Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from Motion task when compositing visual effects into live-action photography. These surfaces are required for choreography of a scene, casting physically accurate shadows of CG elements, and occlusions. We present a novel framework for generating the geometry of landscapes from extremely noisy point cloud datasets obtained via limited resolution techniques, particularly optical flow based vision algorithms applied to live-action video plates. Our contribution is a new statistical approach to remove erroneous tracks ('outliers') by employing a unique combination of well established techniques-including Gaussian Mixture Models (GMMs) for robust parameter estimation and Radial Basis Functions (REFs) for scattered data interpolation-to exploit the natural constraints of this problem. Our algorithm offsets the tremendously laborious task of modeling these landscapes by hand, automatically generating a visually consistent, camera position dependent, thin-shell surface mesh within seconds for a typical tracking shot.