• Title/Summary/Keyword: Gaussian Background Model

Search Result 134, Processing Time 0.027 seconds

Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing (가우시안 혼합모델과 수학적 형태학 처리를 이용한 터널 내에서의 차량 검출)

  • Kim, Hyun-Tae;Lee, Geun-Hoo;Park, Jang-Sik;Yu, Yun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.967-974
    • /
    • 2012
  • In this paper, a vehicle detection algorithm with HD CCTV camera images using GMM(Gaussian Mixture Model) algorithm and mathematical morphological processing is proposed. At the first stage, background could be estimated using GMM from CCTV input image signal and then object could be separated from difference image of the input image and background image. At the second stage, candidated object were reformed by using mathematical morphological processing. Finally, vehicle object could be detected using vehicle size informations depend on distance and vehicle type in tunnel. Through real experiments in tunnel, it is shown that the proposed system works well.

A Study on Fatigue Analysis of Non-Gaussian Wide Band Process using Frequency-domain Method (주파수 영역 해석 기법을 이용한 비정규 광대역 과정의 피로해석에 관한 연구)

  • Kim, Hyeon-Jin;Jang, Beom-Seon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • Most frequency domain-based approaches assume that structural response should be a Gaussian random process. But a lot of non-Gaussian processes caused by multi-excitation and non-linearity in structural responses or load itself are observed in many real engineering problems. In this study, the effect of non-Normality on fatigue damages are discussed through case study. The accuracy of four frequency domain methods for non-Gaussian processes are compared in the case study. Power-law and Hermite models which are derived for non-Gaussian narrow-banded process tend to estimate fatigue damages less accurate than time domain results in small kurtosis and in case of large kurtosis they give conservative results. Weibull model seems to give conservative results in all environmental conditions considered. Among the four methods, Benascuitti-Tovo model for non-Gaussian process gives the best results in case study. This study could serve as background material for understanding the effect of non-normality on fatigue damages.

Adaptive Gaussian Mixture Learning for High Traffic Region (혼잡한 환경에서 적응적 가우시안 혼합 모델을 이용한 배경의 학습 및 객체 검출)

  • Park Dae-Yong;Kim Jae-Min;Cho Seong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • For the detection of moving objects, background subtraction methods are widely used. An adaptive Gaussian mixture model combined with probabilistic learning is one of the most popular methods for the real-time update of the complex and dynamic background. However, probabilistic learning approach does not work well in high traffic regions. In this paper, we Propose a reliable learning method of complex and dynamic backgrounds in high traffic regions.

Real-Time Human Tracking Using Skin Area and Modified Multi-CAMShift Algorithm (피부색과 변형된 다중 CAMShift 알고리즘을 이용한 실시간 휴먼 트래킹)

  • Min, Jae-Hong;Kim, In-Gyu;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.6
    • /
    • pp.1132-1137
    • /
    • 2011
  • In this paper, we propose Modified Multi CAMShift Algorithm(Modified Multi Continuously Adaptive Mean Shift Algorithm) that extracts skin color area and tracks several human body parts for real-time human tracking system. Skin color area is extracted by filtering input image in predefined RGB value range. These areas are initial search windows of hands and face for tracking. Gaussian background model prevents search window expending because it restricts skin color area. Also when occluding between these areas, we give more weights in occlusion area and move mass center of target area in color probability distribution image. As result, the proposed algorithm performs better than the original CAMShift approach in multiple object tracking and even when occluding of objects with similar colors.

Design of Moving Object Detector Based on Gaussian Mixture Model (Gaussian Mixture Model 기반 이동 객체 검출기의 하드웨어 구조 설계)

  • Cho, Jae-Chan;Jung, Yong-Chul;Yoon, Kyunghan;Jung, Yunho
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1571-1572
    • /
    • 2015
  • 본 논문에서는 GMM (Gaussian mixture model) 기반의 BS (background subtraction) 알고리즘을 이용한 이동 객체 검출기의 하드웨어 구조 설계 결과를 제시하였다. 설계된 이동객체 검출기는 1280 * 720 HD 해상도의 영상을 30 frames per second로 실시간 처리가 가능하다. 하드웨어 구현은 Verilog-HDL을 이용하였으며, FPGA 기반 구현 결과, 설계된 이동 객체 검출기는 582 Slice, 1,698 Slice LUT, 8 DSP48s, 1,769 Flip Flop, 691.2 KByte BRAM으로 구성되었음을 확인하였다.

Detection and Recognition of Illegally Parked Vehicles Based on an Adaptive Gaussian Mixture Model and a Seed Fill Algorithm

  • Sarker, Md. Mostafa Kamal;Weihua, Cai;Song, Moon Kyou
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.3
    • /
    • pp.197-204
    • /
    • 2015
  • In this paper, we present an algorithm for the detection of illegally parked vehicles based on a combination of some image processing algorithms. A digital camera is fixed in the illegal parking region to capture the video frames. An adaptive Gaussian mixture model (GMM) is used for background subtraction in a complex environment to identify the regions of moving objects in our test video. Stationary objects are detected by using the pixel-level features in time sequences. A stationary vehicle is detected by using the local features of the object, and thus, information about illegally parked vehicles is successfully obtained. An automatic alarm system can be utilized according to the different regulations of different illegal parking regions. The results of this study obtained using a test video sequence of a real-time traffic scene show that the proposed method is effective.

An analysis of hardware design conditions of EGML-based moving object detection algorithm (EGML 기반 이동 객체 검출 알고리듬의 하드웨어 설계조건 분석)

  • An, Hyo-sik;Kim, Keoung-hun;Shin, Kyung-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.371-373
    • /
    • 2015
  • This paper describes an analysis of hardware design conditions of moving object detection algorithm which is based on effective Gaussian mixture learning (EGML). The simulation model of EGML algorithm is implemented using OpenCV, and it is analyzed that the effects of parameter values on background learning time and moving object detection sensitivity for various images. In addition, optimal design conditions for hardware implementation of EGML-based MOD algorithm are extracted from fixed-point simulations for various bit-width parameters.

  • PDF

SFMOG : Super Fast MOG Based Background Subtraction Algorithm (SFMOG : 초고속 MOG 기반 배경 제거 알고리즘)

  • Song, Seok-bin;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1415-1422
    • /
    • 2019
  • Background subtraction is the major task of computer vision and image processing to detect changes in video. The best performing background subtraction is computationally expensive that cannot be used in real time in a typical computing environment. The proposed algorithm improves the background subtraction algorithm of the widely used MOG with the image resizing algorithm. The proposed image resizing algorithm is designed to drastically reduce the amount of computation and to utilize local information, which is robust against noise such as camera movement. Experimental results of the proposed algorithm have a classification capability that is close to the state of the art background subtraction method and the processing speed is more than 10 times faster.

Fast Speaker Identification Using a Universal Background Model Clustering Method (Universal Background Model 클러스터링 방법을 이용한 고속 화자식별)

  • Park, Jumin;Suh, Youngjoo;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.216-224
    • /
    • 2014
  • In this paper, we propose a new method to drastically reduce computational complexity in Gaussian Mixture Model (GMM)-based Speaker Identification (SI). Generally, GMM-based SI systems have very high computational complexity proportional to the length of the test utterance, the number of enrolled speakers, and the GMM size. These make the SI systems difficult to be used in various real applications in spite of their broad applicability. Thus, a trade-off between computational complexity and identification accuracy is considered as a primary issue for practical applications. In order to reduce computational complexity sharply with a little loss of accuracy, we introduce a method based on the Universal Background Model (UBM) clustering approach and then we show that it can be used successfully in real-time applications. In experiments with the proposed algorithm, we obtained a speed-up factor of 6 with a negligible loss of accuracy.

Advanced Gaussian Mixture Learning for Complex Environment (개선된 적응적 가우시안 혼합 모델을 이용한 객체 검출)

  • Park Dae-Yong;Kim Jae-Min;Cho Seong-Won
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.283-289
    • /
    • 2005
  • Background Subtraction은 움직이는 물체 검출에 가장 많이 사용되는 방법 중 하나이다. 배경이 복잡하고 변화가 심한 경우, 배경을 실시간으로 얼마나 정확하게 학습하는가가 물체 검출의 정확도를 결정한다. Gaussian Mixture Model은 이러한 배경의 모델링에 가장 많이 쓰이는 방법이다. Gaussian Mixture Model은 확률적 학습 방법을 사용하는데, 이러한 방법은 물체가 자주 지나다니거나 물체가 멈춰있는 경우, 배경을 정확하게 모델링하지 못한다. 본 논문에서는 밝기 값에 대한 확률적 모델링과 밝기 값의 변화에 따른 처리를 결합하여 혼잡한 환경에서 배경을 정확하게 모델링할 수 있는 학습 방법을 제안한다.

  • PDF