• Title/Summary/Keyword: Gathering

Search Result 1,665, Processing Time 0.035 seconds

Nodal Analysis of Optimum Operating Condition on Gathering System Considering Coalbed Methane Production Characteristics (석탄층 메탄가스 생산 특성을 고려한 포집시스템 최적 운영조건 노달분석)

  • Jung, Woodong;Cho, Wonjun;Lee, Jeseol;Yu, Hyejin;Seomoon, Hyeok
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.65-73
    • /
    • 2018
  • Coalbed methane has a nonlinear desorption curve depending on the pressure, so an appropriate production system should be constructed considering this phenomenon. The capacity and specification of the coalbed methane gas production facility are determined by the gas flow rate and pressure in the coalbed, which is the external boundary condition of the system. Thus, it is essential to analyze these characteristics in gas production. The gas inflow equation was calculated using the reservoir flow model and utilized as the boundary condition of the whole production facility in this study. Also, to understand the effect of pressure drop on the gas flow in the production facility, the nodal analysis was performed using the flow analysis simulator of production equipment, and we determined the proper specifications and operating conditions of the production facility. This study presents a design criteria as to production and gathering system capable of effectively transporting coalbed methane.

An Implementation of Speech DB Gathering System Using VoiceXML (VoiceXML을 이용한 음성 DB 수집 시스템 구현)

  • Kim Dong-Hyun;Roh Yong-Wan;Hong Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.6 no.1
    • /
    • pp.39-50
    • /
    • 2005
  • Speech DB is basically required factor when we are study for phonetics, speech recognition and speech synthesis and so on. The quantity and quality of speech DB decide the efficiency of system that we develop. therefore. speech DB has an extremely important factor, Recently, development of the various telephone service technique such as voice portal. it is actual condition where the necessity of collection of telephone speech DB. The existing IVR application telephone speech DB collection system used C/C++ language or the exclusive development tool. Thus it is the actual condition where the recycle of each application service for resources is difficult and have a problem of many labors and time necessity. But. VoiceXML is a language having tag form ipredicated in XML. which has easy and simple grammar system. Therefore, if we make a few efforts we could draw up easily. it has a merit reducing labors and time, Also, VoiceXML has many advantages of various telephone speech DB gathering because of changing contents of DB. In this paper, we introduce telephone speech DB gathering system which is the mast important factor for development of speech information processing technique.

  • PDF

Implementation and Performance Evaluation of Reporting Interval-adaptive Sensor Control Scheme for Energy Efficient Data Gathering (에너지 효율적 센서 데이터 수집을 위한 리포팅 허용 지연시간 적응형 센서 제어 기법 구현 및 성능평가)

  • Shon, Tae-Shik;Choi, Hyo-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.459-464
    • /
    • 2010
  • Due to the application-specific nature of wireless sensor networks, the sensitivity to such a requirement as data reporting latency may vary depending on the type of applications, thus requiring application-specific algorithm and protocol design paradigms which help us to maximize energy conservation and thus the network lifetime. In this paper, we implement and evaluate a novel delay-adaptive sensor scheduling scheme for energy-saving data gathering which is based on a two phase clustering (TPC), in wireless sensor networks. The TPC is implemented on sensor Mote hardwares. With the help of TPC implemented, sensors selectively use direct links for control and forwarding time critical sensed data and relay links for data forwarding based on the user delay constraints given. Implementation study shows that TPC helps the sensors to increase a significant amount of energy while collecting sensed data from sensors in a real environment.

Response of Gray Rock Cod to the Colored Lights (색광에 대한 볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.330-334
    • /
    • 1983
  • The author carried out an experiment to find out the response of gray rock cod, Sebastes inermis (Cuvier et Valenciennes) to the color light. The experimental tank ($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of white, blue, yellow and red. The gathering rate of fish on illumination period was small and comparatively fluctuated with stability. The difference of the gathering rates on two different colors of light was much greater, regardless of illumination period, in day time than in night time.

  • PDF

Response of Rockfish to the Colored Lights (색광에 대한 조피볼낙의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.119-123
    • /
    • 1985
  • The author carried out an experiment to find out the response of rockfish, Sebastes schlegeli(Hilgendorf) to the color lights. The experimental tank($360L{\times}50W{\times}55H\;cm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20 W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before they were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red in day time, and yellow, blue, white and red at night time. The gathering rate of fish on illumination period was not constant and fluctuated with irregularity. The difference of the gathering rate on two different colors of light was great and the difference was larger in day time than in night time.

  • PDF

Response of Filefish to the Colored Lights (색광에 대한 말쥐치의 반응)

  • YANG Yong-Rhim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.3
    • /
    • pp.191-196
    • /
    • 1984
  • The author carried out an experiment to find out the response of filefish, Navodon modestus(Gunther) to the colored lights. The experimental tank($360L{\times}50W{\times}55Hcm$) was set up in a dark room. Six longitudinal sections with 60 cm intervals are marked in the tank to observe the location of the fish. Water depth in the tank was kept 50 cm level. Light bulbs of 20W at the both ends of the tank projected the light horizontally into the tank. Two different colored filters were selected from four colors of red, blue, yellow, and white, and they were placed in front of the light bulbs to make different colors of light. Light intensity were controlled by use of auxiliary filters intercepted between the bulb and the filter. The fishes were acclimatized in the dark for 50 minutes before thor were employed in the experiment. Upon turning on the light, the number of fish in each section was counted 40 times in 30 second intervals, and the mean of the number of fish in each section was given as the gathering rate of the fish. The colors favourited by the fish was found in the order of blue, white, yellow and red. The gathering rate of fish on illumination period was not constant but varied randomly. The difference of the gathering rates on two different colors of light was rather in significant, however the difference was larger in the day time than in the night time.

  • PDF