• Title/Summary/Keyword: Gate size

Search Result 531, Processing Time 0.03 seconds

32'-diagonal Gated CNT Cathode

  • Lee, Chun-Gyoo;Lee, Sang-Jo;Lee, Sang-Jin;Chi, Eung-Joon;Lee, Jin-Seok;Yun, Tae-Il;Lee, Byung-Gon;Han, Ho-Su;Ahn, Sang-Hyuck;Jung, Kyu-Won;Kim, Hun-Yeong;Yun, Bok-Chun;Park, Sung-Man;Choi, Jong-Sik;Oh, Tae-Sik;Kang, Sung-Kee;Kim, Jong-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.303-304
    • /
    • 2002
  • 32"-diagonal gated carbon nanotube(CNT) cathodes named under-gate cathodes for large-size display applications have been fabricated and characterized. The emission uniformity looks fine, even without the resistive layer. The emission performance has been improved by scaling down the cathode electrode dimension.

  • PDF

60 GHz Low Noise Amplifier MMIC for IEEE802.15.3c WPAN System (IEEE802.15.3c WPAN 시스템을 위한 60 GHz 저잡음증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.227-228
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of 60 GHz low noise amplifier MMIC for IEEE802.15.3c WPAN system. The 60 GHz LNA was designed using ETRI's $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The performances of the fabricated 60 GHz LNA MMIC are operating frequency of $60.5{\sim}62.0\;GHz$, small signal gain ($S_{21}$) of $17.4{\sim}18.1\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-14{\sim}-3\;dB$, output reflection coefficient ($S_{22}$) of $-11{\sim}-5\;dB$ and noise figure (NF) of 4.5 dB at 60.75 GHz. The chip size of the amplifier MMIC was $3.8{\times}1.4\;mm^2$.

  • PDF

V-Band Power Amplifier MMIC with Excellent Gain-Flatness (광대역의 우수한 이득평탄도를 갖는 V-밴드 전력증폭기 MMIC)

  • Chang, Woo-Jin;Ji, Hong-Gu;Lim, Jong-Won;Ahn, Ho-Kyun;Kim, Hae-Cheon;Oh, Seung-Hyueb
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.623-624
    • /
    • 2006
  • In this paper, we introduce the design and fabrication of V-band power amplifier MMIC with excellent gain-flatness for IEEE 802.15.3c WPAN system. The V-band power amplifier was designed using ETRI' $0.12{\mu}m$ PHEMT process. The PHEMT shows a peak transconductance ($G_{m,peak}$) of 500 mS/mm, a threshold voltage of -1.2 V, and a drain saturation current of 49 mA for 2 fingers and $100{\mu}m$ total gate width (2f100) at $V_{ds}$=2 V. The RF characteristics of the PHEMT show a cutoff frequency, $f_T$, of 97 GHz, and a maximum oscillation frequency, $f_{max}$, of 166 GHz. The gains of the each stages of the amplifier were modified to have broadband characteristics of input/output matching for first and fourth stages and get more gains of edge regions of operating frequency range for second and third stages in order to make the gain-flatness of the amplifier excellently for wide band. The performances of the fabricated 60 GHz power amplifier MMIC are operating frequency of $56.25{\sim}62.25\;GHz$, bandwidth of 6 GHz, small signal gain ($S_{21}$) of $16.5{\sim}17.2\;dB$, gain flatness of 0.7 dB, an input reflection coefficient ($S_{11}$) of $-16{\sim}-9\;dB$, output reflection coefficient ($S_{22}$) of $-16{\sim}-4\;dB$ and output power ($P_{out}$) of 13 dBm. The chip size of the amplifier MMIC was $3.7{\times}1.4mm^2$.

  • PDF

ECC Processor Supporting NIST Elliptic Curves over GF(2m) (GF(2m) 상의 NIST 타원곡선을 지원하는 ECC 프로세서)

  • Lee, Sang-Hyun;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.190-192
    • /
    • 2018
  • This paper describes a design of an elliptic curve cryptography (ECC) processor that supports five pseudo-random curves and five Koblitz curves over binary field defined by the NIST standard. The ECC processor adopts the Lopez-Dahab projective coordinate system so that scalar multiplication is computed with modular multiplier and XORs. A word-based Montgomery multiplier of $32-b{\times}32-b$ was designed to implement ECCs of various key lengths using fixed-size hardware. The hardware operation of the ECC processor was verified by FPGA implementation. The ECC processor synthesized using a 0.18-um CMOS cell library occupies 10,674 gate equivalents (GEs) and 9 Kbits RAM at 100 MHz, and the estimated maximum clock frequency is 154 MHz.

  • PDF

Design of an Optimal RSA Crypto-processor for Embedded Systems (내장형 시스템을 위한 최적화된 RSA 암호화 프로세서 설계)

  • 허석원;김문경;이용석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.447-457
    • /
    • 2004
  • This paper proposes a RSA crypto-processor for embedded systems. The architecture of the RSA crypto-processor should be used relying on Big Montgomery algorithm, and is supported by configurable bit size. The RSA crypto-processor includes a RSA control signal generator, an optimal Big Montgomery processor(adder, multiplier). We use diverse arithmetic unit (adder, multiplier) algorithm. After we compared the various results, we selected the optimal arithmetic unit which can be connected with ARM core-processor. The RSA crypto-processor was implemented with Verilog HDL with top-down methodology, and it was verified by C language and Cadence Verilog-XL. The verified models were synthesized with a Hynix 0.25${\mu}{\textrm}{m}$, CMOS standard cell library while using Synopsys Design Compiler. The RSA crypto-processor can operate at a clock speed of 51 MHz in this worst case conditions of 2.7V, 10$0^{\circ}C$ and has about 36,639 gates.

Design of Viterbi Decoders Using a Modified Register Exchange Method (변형된 레지스터 교환 방식의 비터비 디코더 설계)

  • 이찬호;노승효
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.36-44
    • /
    • 2003
  • This paper proposes a Viterbi decoding scheme without trace-back operations to reduce the amount of memory storing the survivor path information, and to increase the decoding speed. The proposed decoding scheme is a modified register exchange scheme, and is verified by a simulation to give the same results as those of the conventional decoders. It is compared with the conventional decoding schemes such as the trace-back and the register exchange scheme. The memory size of the proposed scheme is reduced to 1/(5 x constraint length) of that of the register exchange scheme, and the throughput is doubled compared with that of the trace-back scheme. A decoder with a code rate of 2/3, a constraint length, K=3 and a trace-back depth of 15 is designed using VHDL and implemented in an FPGA. It is also shown that the modified register exchange scheme can be applied to a block decoding scheme.

A Study on the Plan and Structural System of 4 kan(間) by 4 kan(間) Church in the Early 20th Century (20세기초 4칸${\times}$4칸 교회의 평면구성 및 구조형식에 관한 연구)

  • Kim, Ki-Joo
    • Journal of architectural history
    • /
    • v.17 no.5
    • /
    • pp.39-53
    • /
    • 2008
  • This study aims to investigate and analyze the plan and structural system of 4 kan(間) by 4 kan(間) square church built in early 20th century. At that time, three kinds of traditional wooden structure church had been built under the circumstances of transitional era : Basilica style such as Ganghwa Anglican Church, 'ㄱ' shaped style such as Keumsan Church and $4{\times}4$ Square style such as Bukok Church and Jacheon Church that are concerned in this study. Traditional plans and structural system were mixed with new religious function and transformed into korean peculiar style. $4{\times}4$ Square style is a residual product in that process. Despite of it, little concerns on it till now. The results of this study are described as follows. 1. The plan of these $4{\times}4$ square churches is divided into three areas : cathedra($1{\times}1$), attendance($4{\times}2$), and intermediation($4{\times}2$). The location of cathedra is commonly the opposition part of main gate and projected out of the building. Attendance area was also divided into two, man and woman, because of keeping a distance with each other. 2. The structural system of these $4{\times}4$ square churches are somewhat different because of their size and roof style. In the case of Bukok church, $4{\times}4$ square fall off $3{\times}3$ and $2{\times}2$ gradually and turn into paljak(八作) roof, which enable us to get in traditional entering methods. On the contrary, Jacheon church use hipped roof but almost alike pyramidal roof, which could make us not to recognize entering in the aspect of gable part.

  • PDF

Systolic Arrays for Lattice-Reduction-Aided MIMO Detection

  • Wang, Ni-Chun;Biglieri, Ezio;Yao, Kung
    • Journal of Communications and Networks
    • /
    • v.13 no.5
    • /
    • pp.481-493
    • /
    • 2011
  • Multiple-input multiple-output (MIMO) technology provides high data rate and enhanced quality of service for wireless communications. Since the benefits from MIMO result in a heavy computational load in detectors, the design of low-complexity suboptimum receivers is currently an active area of research. Lattice-reduction-aided detection (LRAD) has been shown to be an effective low-complexity method with near-maximum-likelihood performance. In this paper, we advocate the use of systolic array architectures for MIMO receivers, and in particular we exhibit one of them based on LRAD. The "Lenstra-Lenstra-Lov$\acute{a}$sz (LLL) lattice reduction algorithm" and the ensuing linear detections or successive spatial-interference cancellations can be located in the same array, which is considerably hardware-efficient. Since the conventional form of the LLL algorithm is not immediately suitable for parallel processing, two modified LLL algorithms are considered here for the systolic array. LLL algorithm with full-size reduction-LLL is one of the versions more suitable for parallel processing. Another variant is the all-swap lattice-reduction (ASLR) algorithm for complex-valued lattices, which processes all lattice basis vectors simultaneously within one iteration. Our novel systolic array can operate both algorithms with different external logic controls. In order to simplify the systolic array design, we replace the Lov$\acute{a}$sz condition in the definition of LLL-reduced lattice with the looser Siegel condition. Simulation results show that for LR-aided linear detections, the bit-error-rate performance is still maintained with this relaxation. Comparisons between the two algorithms in terms of bit-error-rate performance, and average field-programmable gate array processing time in the systolic array are made, which shows that ASLR is a better choice for a systolic architecture, especially for systems with a large number of antennas.

Research of an On-Line Measurement Method for High-power IGBT Collector Current

  • Hu, Liangdeng;Sun, Chi;Zhao, Zhihua
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.362-373
    • /
    • 2016
  • The on-line measurement of high-power IGBT collector current is important for the hierarchical control and short-circuit and overcurrent protection of its driver and the sensorless control of the converter. The conventional on-line measurement methods for IGBT collector current are not suitable for engineering measurement due to their large-size, high-cost, low-efficiency sensors, current transformers or dividers, etc. Based on the gate driver, this paper has proposed a current measuring circuit for IGBT collector current. The circuit is used to conduct non-intervention on-line measurement of IGBT collector current by detecting the voltage drop of the IGBT power emitter and the auxiliary emitter terminals. A theoretical analysis verifies the feasibility of this circuit. The circuit adopts an operational amplifier for impedance isolation to prevent the measuring circuit from affecting the dynamic performance of the IGBT. Due to using the scheme for integration first and amplification afterwards, the difficult problem of achieving high accuracy in the transient-state and on-state measurement of the voltage between the terminals of IGBT power emitter and the auxiliary emitter (uEe) has been solved. This is impossible for a conventional detector. On this basis, the adoption of a two-stage operational amplifier can better meet the requirements of high bandwidth measurement under the conditions of a small signal with a large gain. Finally, various experiments have been carried out under the conditions of several typical loads (resistance-inductance load, resistance load and inductance load), different IGBT junction temperatures, soft short-circuits and hard short-circuits for the on-line measurement of IGBT collector current. This is aided by the capacitor voltage which is the integration result of the voltage uEe. The results show that the proposed method of measuring IGBT collector current is feasible and effective.

Design of Image Signal Processor greatly reduced chip area by role sharing of hardware and software (하드웨어와 소프트웨어의 역할 분담을 통해 칩 면적을 크게 줄인 Image Signal Processor의 설계)

  • Park, Jung-Hwan;Park, Jong-Sik;Lee, Seong-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1737-1744
    • /
    • 2010
  • The Image sensor needs various image processing to improve image quality. ISP(Image Signal Processor) performs various image processing. Conventional vision cameras have own software ISP functions and perform in PC instead of using commercial ISP chips. However these methods have problems such as large computation for image processing. In this paper, we proposed ISP that significantly reduced chip area by efficient sharing of hardware and software. Large operation blocks are designed to hardware for high performances, and we used hardware simultaneously with software considering the size of the hardware. The implemented ISP can process VGA(640*4800) images and has 91450 gate sizes in 0.35um process.