• Title/Summary/Keyword: Gate Security

Search Result 112, Processing Time 0.027 seconds

Low area field-programmable gate array implementation of PRESENT image encryption with key rotation and substitution

  • Parikibandla, Srikanth;Alluri, Sreenivas
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1113-1129
    • /
    • 2021
  • Lightweight ciphers are increasingly employed in cryptography because of the high demand for secure data transmission in wireless sensor network, embedded devices, and Internet of Things. The PRESENT algorithm as an ultralightweight block cipher provides better solution for secure hardware cryptography with low power consumption and minimum resource. This study generates the key using key rotation and substitution method, which contains key rotation, key switching, and binary-coded decimal-based key generation used in image encryption. The key rotation and substitution-based PRESENT architecture is proposed to increase security level for data stream and randomness in cipher through providing high resistance to attacks. Lookup table is used to design the key scheduling module, thus reducing the area of architecture. Field-programmable gate array (FPGA) performances are evaluated for the proposed and conventional methods. In Virtex 6 device, the proposed key rotation and substitution PRESENT architecture occupied 72 lookup tables, 65 flip flops, and 35 slices which are comparably less to the existing architecture.

Low-cost AES Implementation for RFID tags (RFID 태그를 위한 초소형 AES 연산기의 구현)

  • Koo, Bon-Seok;Ryu, Gwon-Ho;Yang, Sang-Woon;Chang, Tae-Joo;Lee, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.5
    • /
    • pp.67-77
    • /
    • 2006
  • Radio Frequency IDentification (RFID) will soon become an important technology in various industries. Therefore, security mechanisms for Rm systems are emerging crucial problems in RFID systems. In order to guarantee privacy and security, it is desirable to encrypt the transferred data with a strong crypto algorithm. In this paper, we present the ultra-light weight Advanced Encryption Standard (AES) processor which is suitable for RFID tags. The AES processor requires only 3,992 logic gates and is capable of both 128-bit encryption and decryption. The processor takes 446 clock cycles for encryption of a 128-bit data and 607 clock cycles for decryption. Therefore, it shows 55% improved result in encryption and 40% in decryption from previous cases.

Efficient FPGA Implementation of AES-CCM for IEEE 1609.2 Vehicle Communications Security

  • Jeong, Chanbok;Kim, Youngmin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Vehicles have increasingly evolved and become intelligent with convergence of information and communications technologies (ICT). Vehicle communications (VC) has become one of the major necessities for intelligent vehicles. However, VC suffers from serious security problems that hinder its commercialization. Hence, the IEEE 1609 Wireless Access Vehicular Environment (WAVE) protocol defines a security service for VC. This service includes Advanced Encryption Standard-Counter with CBC-MAC (AES-CCM) for data encryption in VC. A high-speed AES-CCM crypto module is necessary, because VC requires a fast communication rate between vehicles. In this study, we propose and implement an efficient AES-CCM hardware architecture for high-speed VC. First, we propose a 32-bit substitution table (S_Box) to reduce the AES module latency. Second, we employ key box register files to save key expansion results. Third, we save the input and processed data to internal register files for secure encryption and to secure data from external attacks. Finally, we design a parallel architecture for both cipher block chaining message authentication code (CBC-MAC) and the counter module in AES-CCM to improve performance. For implementation of the field programmable gate array (FPGA) hardware, we use a Xilinx Virtex-5 FPGA chip. The entire operation of the AES-CCM module is validated by timing simulations in Xilinx ISE at a speed of 166.2 MHz.

SVM-Based Speaker Verification System for Match-on-Card and Its Hardware Implementation

  • Choi, Woo-Yong;Ahn, Do-Sung;Pan, Sung-Bum;Chung, Kyo-Il;Chung, Yong-Wha;Chung, Sang-Hwa
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.320-328
    • /
    • 2006
  • Using biometrics to verify a person's identity has several advantages over the present practice of personal identification numbers (PINs) and passwords. To gain maximum security in a verification system using biometrics, the computation of the verification as well as the storing of the biometric pattern has to take place in a smart card. However, there is an open issue of integrating biometrics into a smart card because of its limited resources (processing power and memory space). In this paper, we propose a speaker verification algorithm using a support vector machine (SVM) with a very few features, and implemented it on a 32-bit smart card. The proposed algorithm can reduce the required memory space by a factor of more than 100 and can be executed in real-time. Also, we propose a hardware design for the algorithm on a field-programmable gate array (FPGA)-based platform. Based on the experimental results, our SVM solution can provide superior performance over typical speaker verification solutions. Furthermore, our FPGA-based solution can achieve a speed-up of 50 times over a software-based solution.

  • PDF

Piosk : A Practical Kiosk To Prevent Information Leakage

  • Lee, Suchul;Lee, Sungil;Oh, Hayoung;Han, Seokmin
    • International journal of advanced smart convergence
    • /
    • v.8 no.2
    • /
    • pp.77-87
    • /
    • 2019
  • One of important concerns in information security is to control information flow. It is whether to protect confidential information from being leaked, or to protect trusted information from being tainted. In this paper, we present Piosk (Physical blockage of Information flow Kiosk) that addresses both the problems practically. Piosk can forestall and prevent the leakage of information, and defend inner tangible assets against a variety of malwares as well. When a visitor who carries a re-writable portable storage device, must insert the device into Piosk installed next to the security gate. Then, Piosk scans the device at the very moment, and detects & repairs malicious codes that might be exist. After that, Piosk writes the contents (including sanitized ones) on a new read-only portable device such as a compact disk. By doing so, the leakage of internal information through both insiders and outsiders can be prevented physically. We have designed and prototyped Piosk. The experimental verification of the Piosk prototype implementation reveals that, Piosk can accurately detect every malware at the same detection level as Virus Total and effectively prevent the leakage of internal information. In addition, we compare Piosk with the state-of-the-art methods and describe the special advantages of Piosk over existing methods.

A Security SoC supporting ECC based Public-Key Security Protocols (ECC 기반의 공개키 보안 프로토콜을 지원하는 보안 SoC)

  • Kim, Dong-Seong;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1470-1476
    • /
    • 2020
  • This paper describes a design of a lightweight security system-on-chip (SoC) suitable for the implementation of security protocols for IoT and mobile devices. The security SoC using Cortex-M0 as a CPU integrates hardware crypto engines including an elliptic curve cryptography (ECC) core, a SHA3 hash core, an ARIA-AES block cipher core and a true random number generator (TRNG) core. The ECC core was designed to support twenty elliptic curves over both prime field and binary field defined in the SEC2, and was based on a word-based Montgomery multiplier in which the partial product generations/additions and modular reductions are processed in a sub-pipelining manner. The H/W-S/W co-operation for elliptic curve digital signature algorithm (EC-DSA) protocol was demonstrated by implementing the security SoC on a Cyclone-5 FPGA device. The security SoC, synthesized with a 65-nm CMOS cell library, occupies 193,312 gate equivalents (GEs) and 84 kbytes of RAM.

Design of Crypto-processor for Internet-of-Things Applications (사물인터넷 응용을 위한 암호화 프로세서의 설계)

  • Ahn, Jae-uk;Choi, Jae-Hyuk;Ha, Ji-Ung;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.207-213
    • /
    • 2019
  • Recently, the importance for internet of things (IoT) security has increased enormously and hardware-based compact chips are needed in IoT communication industries. In this paper, we propose low-complexity crypto-processor that unifies advanced encryption standard (AES), academy, research, institute, agency (ARIA), and CLEFIA protocols into one combined design. In the proposed crypto-processor, encryption and decryption processes are shared, and 128-bit round key generation process is combined. Moreover, the shared design has been minimized to be adapted in generic IoT devices and systems including lightweight IoT devices. The proposed crypto-processor was implemented in Verilog hardware description language (HDL) and synthesized to gate level circuit in 65nm CMOS process, which results in 11,080 gate counts. This demonstrates roughly 42% better than the aggregates of three algorithm implementations in the aspect of gate counts.

Efficient Bit-Parallel Multiplier for Binary Field Defind by Equally-Spaced Irreducible Polynomials (Equally Spaced 기약다항식 기반의 효율적인 이진체 비트-병렬 곱셈기)

  • Lee, Ok-Suk;Chang, Nam-Su;Kim, Chang-Han;Hong, Seok-Hie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.3-10
    • /
    • 2008
  • The choice of basis for representation of element in $GF(2^m)$ affects the efficiency of a multiplier. Among them, a multiplier using redundant representation efficiently supports trade-off between the area complexity and the time complexity since it can quickly carry out modular reduction. So time of a previous multiplier using redundant representation is faster than time of multiplier using others basis. But, the weakness of one has a upper space complexity compared to multiplier using others basis. In this paper, we propose a new efficient multiplier with consideration that polynomial exponentiation operations are frequently used in cryptographic hardwares. The proposed multiplier is suitable fer left-to-right exponentiation environment and provides efficiency between time and area complexity. And so, it has both time delay of $T_A+({\lceil}{\log}_2m{\rceil})T_x$ and area complexity of (2m-1)(m+s). As a result, the proposed multiplier reduces $2(ms+s^2)$ compared to the previous multiplier using equally-spaced polynomials in area complexity. In addition, it reduces $T_A+({\lceil}{\log}_2m+s{\rceil})T_x$ to $T_A+({\lceil}{\log}_2m{\rceil})T_x$ in the time complexity.($T_A$:Time delay of one AND gate, $T_x$:Time delay of one XOR gate, m:Degree of equally spaced irreducible polynomial, s:spacing factor)

(The chip design for the cipher of the voice signal to use the SEED cipher algorithm) (SEED 암호 알고리즘을 적용한 음성 신호 암호화 칩 설계)

  • 안인수;최태섭;임승하;사공석진
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.1
    • /
    • pp.46-54
    • /
    • 2002
  • The world was opened by communication network because of fast improvement and diffusion of information communication. And information was effected in important factor that control economy improvement of the country. The country should improve the information security system because of necessity to maintain its information security independently. Therefore we have used the SEED cipher algorithm and designed the cipher chip of the voice band signal using the Xilinx Co. XCV300PQ240 chip. At the result we designed the voice signal cipher chip of the maximum frequency 47.895MHz and the total equivalent gate 27,285.

Implemention of Virtual Private Networks supporting User′s choice service (사용자를 위한 선택적인 서비스 지원의 가상사설망 구현)

  • 김정범;이윤정;이근호;이송희;김태윤
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04a
    • /
    • pp.385-387
    • /
    • 2002
  • IETF에서 IPSec(Internet Protocol Security)[1]의 구조를 발표한 이래 IPSec을 이용한 많은 VPN(Virtual PrivateNetwork)[2][3]이 구축되어 왔다. 이렇게 구축된 VPN에서 사용되는 CG(CryptoGate) 혹은 SG(Security Gateway)는 각각의 망에서 게이트 역할을 한다. 하지만 이런 기존의 CG나 SG는 IPSec의 정책을 사용자가 선택하는 것이 아닌 망 관리자가 일방적으로 서비스하도록 설계되어있다. 이러한 점은 사용자가 자신의 데이터를 평가하여 자율적으로 그에 맞는 서비스를 이용하는 것이 아니므로 사용자가 사용하는 것을 꺼릴 수도 있다. 또한 게이트웨이에 자신의 키를 백업할 수 있도록 하여서 사용자가 다시 이 망에 접근할 경우 다시 키 협상을 하는 것이 아닌 백업해둔 키를 가지고 연결할 수 있도록 하였다. 본 논문은 VPN에서 이러한 점을 고려하여 CG를 설계함으로써 VPN 사용의 확장성을 해결한다.

  • PDF