• 제목/요약/키워드: Gate Insulator Thin Film

검색결과 174건 처리시간 0.039초

Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, You-Seung;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.209-212
    • /
    • 2011
  • The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.

나노결정 InGaZnO 산화물 박막트랜지스터와 비결정 InGaZnO 산화물 박막트랜지스터의 소자 신뢰성에 관한 비교 연구 (Comparison of Stability on the Nano-crystalline Embedded InGaZnO and Amorphous InGaZnO Oxide Thin-film Transistors)

  • 신현수;안병두;임유승;김현재
    • 한국전기전자재료학회논문지
    • /
    • 제24권6호
    • /
    • pp.473-479
    • /
    • 2011
  • In this paper, we have compared amorphous InGaZnO (a-IGZO) thin-film transistor (TFT) with the nano-crystalline embedded-IGZO ($N_c$-embedded-IGZO) TFT fabricated by solid-phase crystallization (SPC) technique. The field effect mobility (${\mu}_{FE}$) of $N_c$-embedded-IGZO TFT was 2.37 $cm^2/Vs$ and the subthreshold slope (S-factor) was 0.83 V/decade, which showed lower performance than those of a-IGZO TFT (${\mu}_{FE}$ of a-IGZO was 9.67 $cm^2/Vs$ and S-factor was 0.19 V/decade). This results originated from generation of oxygen vacancies in oxide semiconductor and interface between gate insulator and semiconductor due to high temperature annealing process. However, the threshold voltage shift (${\Delta}V_{TH}$) of $N_c$-embedded-IGZO TFT was 0.5 V, which showed 1 V less shift than that of a-IGZO TFT under constant current stress during $10^5$ s. This was because there were additionally less increase of interface trap charges in Nc-embedded-IGZO TFT than a-IGZO TFT.

Cross-Linked PVP 게이트 유기 박막트랜지스터 (Organic Thin Film Transistors with Cross-Linked PVP Gates)

  • 장지근;오명환;장호정;김영섭;이준영;공명선;이영관
    • 마이크로전자및패키징학회지
    • /
    • 제13권1호통권38호
    • /
    • pp.37-42
    • /
    • 2006
  • 유기 박막트랜지스터(OTFTs)제작에서 PVP-게이트 절연막의 형성과 처리가 소자성능에 미치는 영향을 조사하였다. 유기 게이트 용액의 제조에서는 polyvinyl 계열의 PVP(poly-4-vinylphenol)를 용질로, PGMEA (propylene glycol monomethyl ether acetate)를 용매로 사용하였다. 또한 열경화성 수지인 poly(melamine-co-formaldehyde)를 경화제로 사용하여 유기 절연막의 cross-link를 시도하였다. MIM 시료의 전기적 절연 특성을 측정한 결과, PVP-기반 유기 절연막은 용액의 제조에서 PGMEA에 대한 PVP와 poly (melamine-co-formaldehyde)의 농도를 증가시킬수록 낮은 누설전류 특성을 나타내었다. OTFT 제작에서는 PGMEA에 대해 PVP를 20 wt%로 섞은 PVP(20 wt%) copolymer와 5 wt%와 10 wt%의 poly(melamine-co-formaldehyde)를 경화제로 추가한 cross-linked PVP(20 wt%)를 게이트 유전 재료로 사용하였다. 제작된 트랜지스터들에서 전계효과 이동도는 5 wt % cross-linked PVP(20 wt%) 소자에서 $0.31cm^2/Vs$로, 그리고 전류 점멸비는 10 wt% cross-linked PVP(20 wt%) 소자에서 $1.92{\times}10^5$으로 가장 높게 나타났다.

  • PDF

펜타센TFT의 유기 LED 구동 능력 분석 (Organic LED Current Driving ability Analysis of Pentacene TFT's)

  • 류기성;변현숙;최기범;김용규;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.379-382
    • /
    • 2004
  • In this paper we fabricated a test panel for AMOLED on glass and PET substrate. The test panel consisted of the various size of OTFTs and OLEDs and the current driving capability of OTFTs for OLEDs has been investigated. OTFTs were made of the inverted staggered structure and employed polyvinylphenol (PVP) as the gate insulator and pentacene thin film as the active layer. The OTFTs produced the filed effect mobility of $0.3 cm^2/V.sec$ and on/off current ratio of $10^5$. OLEDs consisted of TPD for HTL and Alq3 for EML with 35nm thick, generating green monochrome light. We found that OTFT with channel length of 70${\mu}m$ and channel width of over 3.5mm provided the sufficient current to OLED to generate the luminescence of $0.3Cd/m^2$.

  • PDF

Fabrication of Test Panel for AMOLED driven by Pentacene TFTs

  • Ryu, Gi-Seong;Byun, Hyun-Sook;Xu, Yong-Xian;Choe, Ki-Beom;Song, Chung-Kun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2004년도 Asia Display / IMID 04
    • /
    • pp.1034-1037
    • /
    • 2004
  • In this paper we fabricated a test panel for AMOLED on glass and PET substrate. The test panel consisted of the various size of OTFTs and OLEDs and the current driving capability of OTFTs for OLEDs has been investigated. OTFTs were made of the inverted staggered structure and employed polyvinylphenol (PVP) as the gate insulator and pentacene thin film as the active layer. The OTFTs produced the filed effect mobility of 0.3$cm^2$/V.sec and on/off current ratio of $10^5$. OLEDs consisted of TPD for HTL and Alq3 for EML with 35nm thick, generating green monochrome light. We found that OTFT with channel length of 70${\mu}m$and channel width of over 3.5mm provided the sufficient current to OLED to generate the luminescence of 0.3Cd/$m^2$.

  • PDF

SiON buffer layer를 이용한 MFIS Capacitor의 제작 및 특성 (Fabrications and properties of MFIS capacitor using SiON buffer layer)

  • 정상현;정순원;인용일;김광호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2001
  • MFIS(Metal-ferroelectric-insulator- semiconductor) structures using silicon oxynitride(SiON) buffer layers were fabricatied and demonstrated nonvolatile memory operations. Oxynitride(SiON) films have been formed on p-Si(100) by RTP(rapid thermal process) in O$_2$+N$_2$ ambient at 1100$^{\circ}C$. The gate leakage current density of Al/SiON/Si(100) capacitor was about the order of 10$\^$-8/ A/cm$^2$ at the range of ${\pm}$ 2.5 MV/cm. The C-V characteristics of Al/LiNbO$_3$/SiON/Si(100) capacitor showed a hysteresis loop due to the ferroelectric nature of the LiNbO$_3$ thin films. Typical dielectric constant value of LiNbO$_3$ film of MFIS device was about 24. The memory window width was about 1.2V at the electric field of ${\pm}$300 kV/cm ranges.

  • PDF

Novel AC bias compensation scheme in hydrogenated amorphous silicon TFT for AMOLED Displays

  • Parikh, Kunjal;Chung, Kyu-Ha;Choi, Beom-Rak;Goh, Joon-Chul;Huh, Jong-Moo;Song, Young-Rok;Kim, Nam-Deog;Choi, Joon-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1701-1703
    • /
    • 2006
  • Here we describe a novel driving scheme in the form of negative AC bias stress (NAC) to compensate shift in the threshold voltage for hydrogenated amorphous silicon (${\alpha}$-Si:H) thin film transistor (TFT) for AMOLED applications. This scheme preserves the threshold voltage shift of ${\alpha}$-Si:H TFT for infinitely long duration of time(>30,000 hours) and thereby overall performance, without using any additional TFTs for compensation. We briefly describe about the possible driving schemes in order to implement for real time AMOLED applications. We attribute most of the results based on concept of plugging holes and electrons across the interface of the gate insulator in a controlled manner.

  • PDF

금속기판에서 재결정화된 규소 박막 트랜지스터 (Recrystallized poly-Si TFTs on metal substrate)

  • 이준신
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.30-37
    • /
    • 1996
  • Previously, crystallization of a-Si:H films on glass substrates were limited to anneal temperature below 600.deg. C, over 10 hours to avoid glass shrinkage. Our study indicates that the crystallization is strongly influenced by anneal temperature and weakly affected by anneal duration time. Because of the high temperature process and nonconducting substrate requirements for poly-Si TFTs, the employed substrates were limited to quartz, sapphire, and oxidized Si wafer. We report on poly-Si TFT's using high temperature anneal on a Si:H/Mo structures. The metal Mo substrate was stable enough to allow 1000.deg. C anneal. A novel TFT fabrication was achieved by using part of the Mo substrate as drain and source ohmic contact electrode. The as-grown a-Si:H TFT was compared to anneal treated poly-Si TFT'S. Defect induced trap states of TFT's were examined using the thermally stimulated current (TSC) method. In some case, the poly-Si grain boundaries were passivated by hydrogen. A-SI:H and poly-Si TFT characteristics were investigated using an inverted staggered type TFT. The poly -Si films were achieved by various anneal techniques; isothermal, RTA, and excimer laser anneal. The TFT on as grown a-Si:H exhibited a low field effect mobility, transconductance, and high gate threshold voltage. Some films were annealed at temperatures from 200 to >$1000^{\circ}C$ The TFT on poly-Si showed an improved $I_on$$I_off$ ratio of $10_6$, reduced gate threshold voltage, and increased field effect mobility by three orders. Inverter operation was examined to verify logic circuit application using the poly Si TFTs.

  • PDF

Flexible Display용 Low Temp Process를 이용한 ZnO TFT의 제작 및 특성 평가 (Fabrication and Characteristics of ZnO TFTs for Flexible Display using Low Temp Process)

  • 김영수;강민호;남동호;최광일;이희덕;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제22권10호
    • /
    • pp.821-825
    • /
    • 2009
  • Recently, transparent ZnO-based TFTs have attracted much attention for flexible displays because they can be fabricated on plastic substrates at low temperature. We report the fabrication and characteristics of ZnO TFTs having different channel thicknesses deposited at low temperature. The ZnO films were deposited as active channel layer on $Si_3N_4/Ti/SiO_2/p-Si$ substrates by RF magnetron sputtering at $100^{\circ}C$ without additional annealing. Also, the ZnO thin films deposited at oxygen partial pressures of 40%. ZnO TFTs using a bottom-gate configuration were investigated. The $Si_3N_4$ film was deposited as gate insulator by PE-CVD at $150^{\circ}C$. All Processes were processed below $150^{\circ}C$ which is optimal temperature for flexible display and were used dry etching method. The fabricated devices have different threshold slop, field effect mobility and subthreshold slop according to channel thickness. This characteristics are related with ZnO crystal properties analyzed with XRD and SPM. Electrical characteristics of 60 nm ZnO TFT (W/L = $20\;{\mu}m/20\;{\mu}m$) exhibited a field-effect mobility of $0.26\;cm^2/Vs$, a threshold voltage of 8.3 V, a subthreshold slop of 2.2 V/decade, and a $I_{ON/OFF}$ ratio of $7.5\times10^2$.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF