• 제목/요약/키워드: Gate Dielectric Film

검색결과 253건 처리시간 0.027초

Plasma Oxidation Effect on Ultralow Temperature Polycrystalline Silicon TFT on Plastic Substrate

  • Kim, Yong-Hae;Moon, Jae-Hyun;Chung, Choong-Heui;Yun, Sun-Jin;Park, Dong-Jin;Lim, Jung-Wook;Song, Yoon-Ho;Lee, Jin-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.1122-1125
    • /
    • 2006
  • The TFT performances were enhanced and stabilized by plasma oxidation of the polycrystalline Si surface prior to the plasma enhanced atomic layer deposition of $Al_2O_3$ gate dielectric film. We attribute the improvement to the formation of a high quality oxide interface layer between the gate dielectric film and the poly-Si film. The interface oxide has a predominant effect on the TFT's characteristics, and is regulated by the gap distance between the electrode and the polycrystalline Si surface.

  • PDF

Transparent ZnO based thin film transistors fabricated at room temperature with high-k dielectric $Gd_2O_3$ gate insulators

  • Tsai, Jung-Ruey;Li, Chi-Shiau;Tsai, Shang-Yu;Chen, Jyun-Ning;Chien, Po-Hsiu;Feng, Wen-Sheng;Liu, Kou-Chen
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.374-377
    • /
    • 2009
  • The characteristics of the deposited thin films of the zinc oxide (ZnO) at different oxygen pressures will be elucidated in this work. The resistivity of ZnO thin films were dominated by the carrier concentration under high oxygen pressure conditions while controlled by the carrier mobility at low oxygen ambiences. In addition, we will show the characteristics of the transparent ZnO based thin film transistor (TFT) fabricated at a full room temperature process with gate dielectric of gadolinium oxide ($Gd_2O_3$) thin films.

  • PDF

Characteristics of Pentacene Thin Film Transistors with Stacked Organic Dielectrics for Gate Insulator

  • Kang, Chang-Heon;Lee, Jong-Hyuk;Choi, Jong-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2002년도 International Meeting on Information Display
    • /
    • pp.184-187
    • /
    • 2002
  • In this work, the electrical characteristics of organic thin film transistors with the stacked organic gate insulators have been studied. PVP(Polyvinylphenol) and polystyrene were used as gate insulating materials. Both the high dielectric constant of PVP and better insulating capability of polystyrene were compensatorily adopted in two different stacking orders of PVP-polystyrene and polystyrene-PVP. The output characteristics of the device with the stacked gate insulator showed substantial improvement compared with those of the devices with either PVP or polystyrene gate insulator: Furthermore, these stacked organic gate insulators can differently affect the TFT characteristics with the stacking orders. The electrical properties of TFTs with organic gate insulators stacked in different orders are discussed.

  • PDF

Oxide Semiconductor Thin Film Transistor based Solution Charged Cellulose Paper Gate Dielectric using Microwave Irradiation

  • 이성영;조광원;조원주
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.207.1-207.1
    • /
    • 2015
  • 차세대 디스플레이 소자로서 TAOS TFT (transparent amorphous oxide semiconductor Thin Film Transistor)가 주목 받고 있다. 또한, 최근에는 값 비싼 전자 제품을 저렴하고 간단히 처분 할 수 있는 시스템으로 대신 하는 연구가 진행되고 있다. 그중, cellulose-fiber에 전기적 시스템을 포함시키는 e-paper에 대한 관심이 활발하다. cellulose fiber는 가볍고 깨지지 않으며 휘는 성질을 가지고 있다. 가격도 저렴하고 가공이 용이하여 차세대 기판의 재료로서 주목받고 있다. 하지만, cellulose-fiber 위에는 고온의 열처리공정과 고품질 박막 성장이 어려워서 TFT 제작에 어려움을 겪고 있다. 이러한 문제를 해결하기 위해서 산화물 반도체를 이용하여 TFT를 제작한 사례가 보고되고 있다. 또한, 채널 물질 뿐만 아니라 cellulose fiber에도 다른 물질을 첨가하거나 증착하여 전기적 화학적 특성을 개선시킨 사례도 많이 보고되고 있다. 본 연구에서는 가장 저품질의 용지로 알려진 신문지와 A4용지를 gate dielectric을 이용하여서 a-IGZO TFT를 제작하였다. 하지만, cellulose fiber로 만들어진 TFT의 경우에는 고온의 열처리가 불가능 하다. 따라서 저온에서 높을 효율은 보이는 microwave energy를 이용하여 열처리를 진행하였다. 추가적으로 저품질의 종이의 특성을 개선시키기 위해서 high-k metal-oxide solution precursor를 첨가 하여 TFT의 특성을 개선시켰다. 결과적으로 cellulose fiber에 metal-oxide solution precursor을 첨가하는 공정과 micro wave를 조사하는 방법을 사용하여 100도 이하에서 cellulose fiber를 저렴하고 우수한 성능의 TFT를 제작에 성공하였다.

  • PDF

Gate dielectric based on organic-inorganic hybrid polymer in organic thin-film transistors

  • Lee, Seong-Hui;Jeong, Sun-Ho;Moon, Joo-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.727-729
    • /
    • 2007
  • Inorganic-organic hybrid polymer provides various advantages including low-temperature process, high dielectric constant and direct photo-patterning. The hybrid dielectric was synthesized by the sol-gel process in which an acid-catalyzed solution of Si alkoxide and Zr alkoxide was used as a precursor. The electrical performance of transistors with hybrid dielectric was investigated.

  • PDF

Electrical Characteristics of Organic Thin-film Transistors with Polyvinylpyrrolidone as a Gate Insulator

  • Choi, Jong-Sun
    • Journal of Information Display
    • /
    • 제9권4호
    • /
    • pp.35-38
    • /
    • 2008
  • This paper reports the electrical characteristics of polyvinylpyrrolidone (PVPy) and the performance of organic thin-film transistors (OTFTs) with PVPy as a gate insulator. PVPy shows a dielectric constant of about 3 and contributes to the upright growth of pentacene molecules with $15.3\AA$ interplanar spacing. OTFT with PVPy exhibited a field-effect mobility of 0.23 $cm^2$/Vs in the saturation regime and a threshold voltage of -12.7 V. It is notable that there was hardly any threshold voltage shift in the gate voltage sweep direction. Based on this reliable evidence, PVPy is proposed as a new gate insulator for reliable and high-performance OTFTs.

다결정 실리콘 박막 트랜지스터에서의 수소화에 따른 전기적 스트레스의 영향 (Effects of Electrical Stress on Hydrogen Passivated Polysilicon Thin Film Transistors)

  • 김용상;최만섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1502-1504
    • /
    • 1996
  • The effects of electrical stress in hydrogen passivated and as-fabricated poly-Si TFT's are investigated. It is observed that the charge trapping in the gate dielectric is the dominant degradation mechanism in poly-Si TFT's which has been stressed by the gate bias alone while the creation of defects in the poly-Si film is prevalent in gate and drain bias stressed devices. The degradation due to the gate bias stress is dramatically reduced with hydrogenation time while the degradation due to the gate and drain bias stress is increased a little. From the experimental results, it is considered that hydrogenation suppress the charge trapping at gate dielectrics as well as improve the characteristics of poly-Si TFT's.

  • PDF

다결정 박막 트랜지스터 적용을 위한 SiNx 박막 연구 (A Study on the Silicon Nitride for the poly-Si Thin film Transistor)

  • 김도영;김치형;고재경;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1175-1180
    • /
    • 2003
  • Transformer Coupled Plasma Chemical Vapor Deposited (TCP-CVD) silicon nitride (SiNx) is widely used as a gate dielectric material for thin film transistors (TFT). This paper reports the SiNx films, grown by TCP-CVD at the low temperature (30$0^{\circ}C$). Experimental investigations were carried out for the optimization o(SiNx film as a function of $N_2$/SiH$_4$ flow ratio varying ,3 to 50 keeping rf power of 200 W, This paper presents the dielectric studies of SiNx gate in terms of deposition rate, hydrogen content, etch rate and leakage current density characteristics lot the thin film transistor applications. And also, this work investigated means to decrease the leakage current of SiNx film by employing $N_2$ plasma treatment. The insulator layers were prepared by two step process; the $N_2$ plasma treatment and then PECVD SiNx deposition with SiH$_4$, $N_2$gases.

Organic Thin Film Transistors for Liquid Crystal Display Fabricated with Poly 3-Hexylthiophene Active Channel Layer and NiOx Electrodes

  • Oh, Yong-Cheul
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1140-1143
    • /
    • 2006
  • We report on the fabrication of P3HT-based thin-film transistors (TFTs) for liquid crystal display that consist of $NiO_x$, poly-vinyl phenol (PVP), and Ni for the source-drain (S/D) electrodes, gate dielectric layer, and gate electrode, respectively The $NiO_x$ S/D electrodes of which the work function is well matched to that of P3HT are deposited on a P3HT channel by electron-beam evaporation of NiO powder. The maximum saturation current of our P3HT-based TFT is about $15{\mu}A$ at a gate bias of -30 V showing a high field effect mobility of $0.079cm^2/Vs$ in the dark, and the on/off current ratio of our TFT is about $10^5$. It is concluded that jointly adopting $NiO_x$ for the S/D electrodes and PVP for gate dielectric realizes a high-quality P3HT-based TFT.

Fabrication of Thin Film Transistor Using Ferroelectrics

  • Hur, Chang-Wu;Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • 제2권2호
    • /
    • pp.93-96
    • /
    • 2004
  • The a-Si:H TFT using ferroelectric of $SrTiO_3$ as a gate insulator is fabricated on glass. Dielectric characteristics of ferroelectric are superior to $SiO_2$ and $Si_{3}N_{4}$. Ferroelectric increases on-current, decreases threshold voltage of TFT and also improves breakdown characteristics. The a-SiN:H has optical band gap of 2.61 eV, retractive index of 1.8∼2.0 and resistivity of $10^{13}$~$10^{15}$ $\Omega$cm, respectively. Insulating characteristics of ferroelectrics are excellent because dielectric constant of ferroelectric is about 60∼100 and breakdown strength is over 1MV/cm. TFT using ferroelectric has channel length of 8∼20 $\mu\textrm{m}$ and channel width of 80∼200 $\mu\textrm{m}$. And it shows that drain current is 3.4$\mu\textrm{A}$ at 20 gate voltage, $I_{on}$/$I_{off}$ is a ratio of $10^5$~$10^8$ and $V_{th}$ is 4∼5 volts, respectively. In the case of TFT without ferroelectric, it indicates that the drain current is 1.5 $\mu\textrm{A}$ at 20 gate voltage and $V_{th}$ is 5∼6 volts. With the improvement of the ferroelectric thin film properties, the performance of TFT using this ferroelectric has advanced as a gate insulator fabrication technology is realized.