• Title/Summary/Keyword: Gasturbine

Search Result 18, Processing Time 0.022 seconds

Performance Test of Combustor for Aeropropulsion Gasturbine Engine (항공추진용 가스터빈엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Jeon, Byoung-Ho;Yang, Su-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.405-406
    • /
    • 2008
  • Combustor is one of the major component of gas turbine engine and its development is done mostly by performance test. Combustors for aviation gasturbine engines has been successfully tested at the test facility in KARI as well as for stationary gasturbine engines. Full scale combustor test requires large amount of high temperature and pressure air, so the test facility is equipped with big air compressor and heater.

  • PDF

Development of Low NOx Combustor for 55kw Class Micro Gasturbine (55kW급 마이크로터빈용 저공해 연소기 개발)

  • Kim Hyung-Mo;Park Young-Il;Park Poo-Min;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.318-321
    • /
    • 2005
  • The design and performance test of a low NOx gas turbine combustor to be used in 55kW class micro-gasturbine engine was performed in KARI's combustion test facility. The combustor is reverse flow-can type for easy installation of injector and other parts and LNG is used as fuel. The performance targets are $99.5\%$ combustion efficiency, less 10ppm NOx, $30\%$ patten factor and $4\%$ pressure loss. Most of the performances required are satisfied.

  • PDF

Performance Test of 5MW Gas Turbine Engine Combustor (5MW 발전용 가스터빈 엔진 연소기 성능시험)

  • Park, Poo-Min;Kim, Hyung-Mo;Choi, Young-Ho;Yang, Soo-Seok;Chon, Mu-Hwan
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.37-46
    • /
    • 2008
  • Performance test of 5MW class gasturbine combustor was carried out at combustor test facility of KARI(Korea Aerospace Research Institute). The combustor is dry low NOx type premixed combustor and fuel is natural gas. The characteristics of combustor were measured including emission, pressure pulsation and exit temperature distribution. Optimum operation point of combustor was found by changing parameters like fuel ratio between pilot and main burner. The test result showed that the combustor performance is sufficient to satisfy the gasturbine system requirement.

  • PDF

Design Study of Fuel Supply System for 5MW-class Bio Gasturbine by Using Food Waste Water (5MW급 바이오 가스터빈용 전처리시스템 설계연구)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.10-17
    • /
    • 2011
  • Korea is the 11th largest energy consumption country and 96% of its total energy consumption depends on imports from overseas. Therefore it is a very important task to secure renewable energy sources which can reduce both the carbon-dioxide emission and dependency on overseas energy imports. Among the various renewable energy sources, organic wastes are important sources. In Korea, 113 million toe of methane is generated from organic wastes annually, but only 3.7% is effectively used for energy conversion. Thus, it is very important to make better use of organic wastes, especially for power generation. The goals of this project are to develope the fuel supplying system of Bio Gasturbine (GT) for 5MW-class co-generation system. The fuel supplying system mainly consists of $H_2S$ removal system, Bio Gas compression system, Siloxane removal system and moisture separating systems. The fuel requirement of 5MW-class GT is at around 60% of $CH_4$, $H_2S$ (<30 ppm), Siloxane(<10 mg/$nm^3$) and supply pressure (> 25 bar) from biogas compressor. Main mechnical charateristics of Bio Gasturbine system have the specific performance; 1) high speed turbine speed (12,840 rpm) 2) very clean emmission NOx (<50 ppm) 3) high efficiency of energy conversion rate. This paper focuses on the development of design technology for food waste biogas pretreatment system for 5MW-class biogas turbine. The study also has the plan to replace the fuel of gas turbine and other distributed power systems. As the increase of bioenergy, this system help to contribute to spread more New & Renewable Energy and the establishment of Renewable Portfolio Standards (RPS) for Korea.

An Evaluation of Energy Quality for Distributed Powersystem (분산형 발전설비 병열운전 에너지 품질평가)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yoon, Gi-Gab;Rhim, Sang-Kyu;Choi, In-Kyu
    • Journal of Energy Engineering
    • /
    • v.19 no.1
    • /
    • pp.8-15
    • /
    • 2010
  • As environmental friendly energy system, distributed micro gasturbine is focused on new energy source for overcoming brand new construction area of power generation. This distributed micro gasturbine system has the powerful characteristics as belows; 1) environmental friendly features NOx < 9 ppm, noise < 65 db 2) various fuel flexbility which is used such as natural gas, diesel, low calory new & renewable fuel, kerosene. 3) high specific output power based on small area and is avilable for very easy and compact installation. There are many new installation sites in USA and Japan from 1998. On the other hand the exhisting large power system was constructued by the sea side, this compact power system is now installed by enduser in downtown area and supplying combined heat & power, has the various apllication on-site power generation. In recently, there is the very important issue for new & reliablbe energy development and spreading out. This paper represent as belows for important system characteristics; 1) grid connection modeling 2) system operation characteristics 3) on-site operation result and evaluation output of power quality analysis.

Large Eddy Simulation of Turbulent Combustion Flow Based on 2-scaler flamelet approach

  • Oshima, Nobuyuki;Tominaga, Takuji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.18-21
    • /
    • 2006
  • This paper investigates LES of turbulent combustion flow based on 2-scalar flamelet approach, where a G-equation and a conserved scalar equation simulate a propagation of premixed flame and a diffusion combustion process, respectively. The turbulent SGS modeling on these flamelet combustion approach is also researched. These LES models are applied to an industrial flows in a full scale gasturbine combustor with premixed and non-premixed flames. The numerical results predict the characteristics of experiment temperature profiles. Unsteady features of complex flames in combustor are also visualized.

  • PDF

Unsteady Performance Analysis of a Simple Shaft Gas Turbine Cycle (단순 가스터빈 사이클 과도 성능해석)

  • Kim, Soo-Yong;Soudarev, B.
    • 연구논문집
    • /
    • s.30
    • /
    • pp.5-13
    • /
    • 2000
  • The computation scheme of simulating gas turbine transient behavior was developed. The basic principles of this scheme and main input data required are described. Calculation results are presented in terms of whole operating regime of the cycle. The influence of main initial parameters such as starting engine power, moment of inertia of the rotor, fuel supplying schedule etc. on performance characteristics of has turbine during transient operation is studied In addition, bleeding air influence on transient behavior was also considered For validation of the developed code, comparison of present calculation with that of measurement data of the experimental data for the range of operating period studied.

  • PDF

Performance Analysis of an 74Kw Industrial Turbo-Shaft Gas Thrbine Engine (74 KW급 터보축 싸이클 산업용 가스터빈 엔진의 성능 예측)

  • Kim, Su-Yong;Yun, Ui-Su;Jo, Su-Yong;O, Gun-Seop
    • 연구논문집
    • /
    • s.26
    • /
    • pp.43-50
    • /
    • 1996
  • Present paper describes on/off design performance analysis of an 74KW industrial turboshaft gasturbine engine. Procedures to match between the compressor, combustor and turbine have been incorporated into the developed program satisfying compatibility requirement of flow and work and ratational speed. The validity of the performance results from the developed program are yet to be proved through performance experiments of the resultant engine, but comparison of the present results with those from "GASCAN(Thermoflow:America) under similar mass inlet flow, pressure ratio, and speed condition show good agreement despite present results underpredict 6-10% for power and up to 3% in efficiency, respectively.

  • PDF

Analysis of Axial Compressor Design Characteristics in Large Class Gas Turbine for Power Generation (발전용 대형 가스터빈 축류압축기 설계 특성 분석)

  • Lee, Sung-Ryong;Song, Jae-Wook;Kim, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.64-69
    • /
    • 2012
  • Currently axial flow compressor is used primarily in a large power generation gas turbine. In this paper,the main factors to be considered when designing a axial flow compressor were compared to those of a small power generation gas turbine(DGT-5). The main design parameters was examined in the aspect ratio, solidity, as well as reaction, diffusion factor, incidence angle, etc. The results in case of a small compressor are showed a regular pattern but there were not found any specific design patterns for a large class compressor.