• Title/Summary/Keyword: Gasoline of-gas

Search Result 414, Processing Time 0.026 seconds

Comparing Exhaust Gas Emission and PN in LPG and CNG Vehicle under FTP-75 and WLTC Test Mode (FTP-75, WLTC 시험 모드에서 LPG, CNG 자동차의 배출가스 및 PN 비교)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.6
    • /
    • pp.9-15
    • /
    • 2016
  • Liquefied petroleum gas (LPG) and compressed natural gas (CNG) are often used as fuel for vehicles because they are clean alternative gas fuels. CNG, as a low-carbon fuel, can contribute to the reduction of greenhouse gas emissions. LPG is often used as fuel for taxis because the performance is almost the same as that of gasoline but the price is lower. In the present study, the exhaust gas and the particle number (PN) of particulate matter, which is a recent environmental issue, were compared between LPG and CNG for the same vehicle. A chassis dynamometer was used to conduct the test according to the Federal Test Procedure (FTP)-75 and Worldwide harmonized Light-duty vehicle Test Procedure (WLTC) modes. The PN values of discharged particles having sizes of 5 nm or larger and 23 nm or larger were measured using two condensation particle counters (CPC). The ratio of carbon dioxide was high in the exhaust gas from the LPG vehicle; the ratio of methane was high in the exhaust gas from the CNG vehicle. The PN values of the emitted particles from the two fuels were similar. The PN values of particles having sizes of 23 nm or smaller were high in the high-speed WLTC mode.

An Economic Feasibility Analysis of a Hydrogen Fuel-Cell Vehicle Considering GHG (GHG를 고려한 수소연료전지 자동차의 경제성 분석)

  • Yang, Moon-Hee;Gim, Bong-Jin;Kim, Jong-Wook
    • New & Renewable Energy
    • /
    • v.1 no.3 s.3
    • /
    • pp.42-50
    • /
    • 2005
  • This paper deals with the economic feasibility model and analysis of a hydrogen fuel-cell vehicle [FCV] against two similar types of non-business vehicles fueled with gasoline [GV] and diesel [DV] considering greenhouse gas [GHG]. Considering the price of vehicles and annual operating cost, we build a classical economic feasibility model. Since the economic feasibility could be affected by many input factors such as the prices of vehicles, the price of fuels, annual driving distance and so on, we estimate the average future values of input factors, which is defined as "the average case". Based on the average case, we assess the representative economic feasibility of a FCV with/without GHG, and by changing various annual driving distances, we assess its economy in terms of net-present value, internal rate of return, and payback period. In addition, we make some sensitivity analysis of its economic feasibility by changing the values of the critical input factors one at time. Based on the average case, it turns out that the consumer of a FCV could save 25,000 won/year for a GV, but the consumer could pay 120,000 won/year more for a DV. This indicates that gasoline vehicles could be replaced gradually by FCVs in Korean market which might be formed by those consumers driving annually more than approximately 14,800 km. As the results of our sensitivity analysis, it turns out that a FCV is no more economical if the difference of the prices between FCV and GV is more than 10,130,000 won or the price of hydrogen fuel could be more than 5,136 won/kg.

  • PDF

An Experimental Study on Spray Characteristics of Directly Injected Bio-Ethanol-Gasoline Blended Fuel By Varying Fuel Temperature (직접분사식 바이오 에탄올-가솔린 혼합연료의 연료온도에 따른 분무 특성에 관한 실험적 연구)

  • Lee, Seangwook;Park, Giyoung;Kim, Jongmin;Park, Bongkyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.636-642
    • /
    • 2014
  • As environment problem became a worldwide issue, countries are tightening regulations regarding greenhouse gas reduction and improvement of air pollution problems. With these circumstances, one of the renewable energies produced from biomass is getting attention. Bio-ethanol, which is applicable to SI engine, showed a positive effect on the PFI (Port Fuel Injection) type. However, Ethanol has a problem in homogeneous mixture formation because it has high latent heat of vaporization characteristics and in the GDI (Gasoline Direct Injection) type, mixture formation is required quickly after fuel injection. Particularly, South Korea is one of the countries with great temperature variation among seasons. With this reason, South Korea supply fuel additive for smooth engine operation during winter. Therefore, experimental study and investigation about application possibility of blending fuel is necessary. This paper demonstrates the spray characteristics by using the CVC direct injection and setting the bio-ethanol blending fuel temperature close to the temperature during each seasons: -7, 25, $35^{\circ}C$. The diameter and the width of the CVC are 86mm and 39mm. High-pressure fuel supply system was used for target injection pressure. High-speed camera was used for spray visualization. The experiment was conducted by setting the injection pressure and ambient pressure according to each temperature of bio-ethanol blending fuel as a parameter. The result of spray visualization experiment demonstrates that as the temperature of the fuel is lower, the atomization quality is lower, and this increase spray penetration and make mixture formation difficult. Injection strategy according to fuel temperature and bio-ethanol blending rate is needed for improving characteristics.

Estimation on the Emission Reduction of SULEV LPG Vehicles (SULEV LPG 자동차의 배출가스 저감효과 평가)

  • Park, Jun-Hong;Lee, Jong-Tae;Kim, Sun-Moon;Kim, Jeong-Soo;Kang, Dae-Il;Lim, Yun-Sung;Han, Bo-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • SULEV (Super Ultra Low Emission Vehicle) which is one of the emission standards in Fleet Average System introduced to Korea from 2009 is known as the most severe standard to achieve with internal combustion engine. Considering low sales volume of hybrid vehicles in Korea, vehicle manufacturers are required to develop SULEV technologies for conventional gasoline and LPG vehicles to meet the future Fleet Average standard. In this study, the comparison of emissions has been made between SULEV developed and ULEV LPG vehicles mainly produced in this time. To estimate the emission reduction of SULEV vehicles, CVS-75 and NIER test modes have been used. CVS-75 has been used for emission certification of gasoline and LPG vehicles. NIER modes cover various average vehicle speed and reflect Korean real driving patterns better than CVS-75. The test results show that SULEV LPG vehicles have very high potential to reduce $NO_x$ in regulated emissions, $N_2O$ in green house gases and toluene in VOCs. However, SULEV LPG vehicles don't affect much on the reduction of CO and total green house gases.

Performance Characteristics with Various Fuel Composition and Temperature for an External Type Fuel Pump in LPLi System (LPLi 시스템에서 외장형 펌프의 연료조성 및 온도에 따른 성능특성 연구)

  • Nam, Deok-Woo;Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.566-575
    • /
    • 2011
  • Since LPG (Liquefied petroleum gas) fuel supply system has an advantage of low emission characteristics, many studies have been conducted. In spite of the advantage of LPG supply system, a higher vapor pressure and lower viscosity than diesel or gasoline fuel may cause unstable running of fuel pump by the deterioration in lubrication performance and chemical reaction with rubber parts than that of diesel and gasoline fuel. Therefore its physical properties can cause the deterioration of durability. In this research, we developed an external type LPG pump which has the advantage of the price competitiveness and the convenient maintenance for LPLi system. The experiments were carried out in order to assess characteristics of the external type fuel pump at different fuel composition and temperature. As a result, there aren't any differences between internal and external type pump performance. It is observed that the same level of efficiency was maintained for both pumps as flow rate was increased with higher fuel temperature and more contents of propane in the fuel. And the pressure difference in LPLi system is maintained at constant with the various fuel compositions and temperatures due to their own characteristics of fuel supply system.

An Study on the Cylinder Wall Temperature and Performance of Gasoline Engine according to Engine Speed (가솔린기관의 회전수 변화에 따른 실린더 벽면온도 변화 및 기관성능에 관한 연구)

  • Kwon, K.R.;Oho, Y.O.;Kang, N.H.
    • Journal of Power System Engineering
    • /
    • v.6 no.1
    • /
    • pp.20-26
    • /
    • 2002
  • The purpose of this study is preventing the stick, scuffing, scratch between piston and cylinder in advance, and obtaining data for duration test in actual engine operation. The temperature gradient in cylinder bore according to coolant temperature were measured using $1.5{\ell}$ class diesel engine. 20 thermocouples were installed 2mm deep inside from cylinder wall near top ring of piston in cylinder block, at which points major thermal loads exist. It is suggested as proper measurement points for engine design by industrial engineers. Under full load and $70^{\circ}$, $80^{\circ}C$ and $90^{\circ}C$ coolant temperature conditions, the temperature in cylinder block and engine oil increased gradually according to the increase of coolant temperature, the siamese side temperature of top dead center is $142^{\circ}C$ in peripheral distribution, that is about $20^{\circ}C$ higher than that at thrust, anti-thrust, and rear side temperature, respectively. The maximum pressure of combustion gas in $70^{\circ}C$ coolant temperature is about 2 bar lower than those of $80^{\circ}C$ and $90^{\circ}C$ coolant temperature. The engine torque in $80^{\circ}C$, $90^{\circ}C$ coolant temperature condition is about 4.9Nm higher than that of $70^{\circ}C$ coolant temperature.

  • PDF

A Study about Emission Characteristic of LPG Vehicle on SFTP (LPG 자동차의 SFTP 모드 배출가스 특성에 관한 연구)

  • Kim, Sungwoo;Song, Hoyoung;Lee, Minho;Kim, Kiho
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.74-84
    • /
    • 2016
  • After Sep. 2017, the LEV3 emission standard will be applied to gasoline and gas vehicles in Korea. This standard has HWFET and SFTP standard as well as FTP-75. Most of LPG vehicles were certificated as SULEV in Korea. Until now, only FTP-75 standard is applying for the certification but it is expected that HWFET and SFTP are used after beginning LEV3. In this paper, 8 LPG and 4 gasoline vehicles were tested on FTP-75 and SFTP to check whether the LPG vehicles can meet LEV3 SFTP standard or not and to suggest direction of development. Most of test vehicles did not meet the SFTP standard. To make up for the fault, fuel injection control improvement is needed.

Effect of Engine Specification and Driving Conditions on the Idle Emission Characteristics of SI Vehicles (Sl 자동차의 아이들 운전시 엔진 및 운행 조건에 따른 배출 가스 특성)

  • 류재욱;송정훈;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.70-76
    • /
    • 2002
  • This study focus on the effect of engine specification, driving conditions and the vehicle type on the idle emission characteristics. In order to obtain the characteristics of exhaust emissions, 1,260 vehicles of spark ignition engine are sampled and investigated. The exhaust emissions are measured with a CO/HC emission gas analyzer. The Sl engine vehicles are investigated by the effect of various exhaust emission parameters such as vehicle milage, engine specification, valve trains and fuels. The results show that the amount of CO and HC emission is not directly related to the driving mileage of the vehicle. However, the engine specifications and fuels such as the type of valve train and piston displacement have influence on the exhaust emissions. In addition, the LPG vehicle emits more CO and HC than gasoline vehicle. Based on the test results of SI vehicles, the influence of excess air and displacement volume are discussed.

A Study on Combustion and Emission Characteristics of the Methanol Blended Fuel in SI Engine (SI엔진의 메탄올 혼합 연료의 연소 및 배출 가스 특성에 관한 연구)

  • 조행묵;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 2003
  • The engine performance and combustion characteristics of methanol blended fuel in a multiple-point electronic control gasoline engine were discussed on the basis of experimental investigation. The effects of methanol blending fuel on combustion in cylinder were investigated under various conditions of engine cycle and blending ratio. The results showed that the engine performance was influenced by the methanol blended ratio. The results showed that the engine performance was influenced by the methanol blending ratio and the variations of operating conditions of test engine. The increase of blended fuel brought on the improvement of emission characteristics such as THC, CO, and NOx concentration. The effect of methanol blended fuel on the fuel consumption rate and the other characteristics of performance were discussed.

A study on spark-ignition engine knock measurements (스파크점화 기관의 노킹측정에 관한 연구)

  • 전광민;장원준
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.57-64
    • /
    • 1991
  • Spart-ignition engine knock is an abnormal combustion phenomenon originated from auto- ignition of a portion of or the entire end-gas during the later stage of combustion process. And engine knock is accompanied by a vibration of engine cylinder block and a high-pitched metallic noise. Engine knock is characterized in terms of its intensity, its occurrence crank angel and the percentage of engine knock cycles. To characterize engine knock, a precise measurements of cylinder pressure and a statistical analysis of cylinder pressure data are needed. The purpose of this study is to develope a technique to measure engine knock and its characteristics as a function of ignition timing change. A 4-cylinder spark-ignition engine and unleaded gasoline, whose octane number was 94, were used for experiments. To measure engine knock and to analyze engine knock characteristics, cylinder pressure data were sampled by a high speed data acquisition system which was developed in this study. Cylinder pressure data were sampled at each 0.1.deg. crank angle and the number of cycles continuously sampled was 80.

  • PDF