• Title/Summary/Keyword: Gasoline Direct injection

Search Result 188, Processing Time 0.023 seconds

EXPERIMENTAL STUDY ON THE STRATIFIED COMBUSTION CHARACTERISTICS ACCORDING TO COMPRESSION RATIO AND INTAKE TEMPERATURE IN A DIG ENGINE

  • Lee, C.H.;Lee, K.H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.675-680
    • /
    • 2006
  • In the direct injected gasoline engine, atomized spray is desired to achieve efficient mixture formation needed to good engine performance because the injection process leaves little time for the evaporation of fuels. Therefore, substantial understanding of global spray structure and quantitative characteristics of spray are decisive technology to optimize combustion system of a GDI engine. The combustion and emission characteristics of gasoline-fueled stratified-charge compression ignition(SCCI) engine according to intake temperature and compression ratio was examined. The fuel was injected directly to the cylinder under the high temperature condition resulting from heating the intake port. With this injection strategy, the SCCI combustion region was expanded dramatically without any increase in NOx emissions, which were seen in the case of compression stroke injection. Injection timing during the intake temperature was found to be an important parameter that affects the SCCI region width. The mixture stratification and the fuel reformation can be utilized to reduce the required intake temperature for suitable SCCI combustion under each set of engine speed and compression ratio conditions.

Investigation on the Sauter Mean Diameter of an Air-Assisted Fuel Injector -Operating Parameter Consideration (운전조건에 따른 공기보조 분사기의 Sauter 평균입경에 대한 고찰)

  • 장창수;최상민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.42-50
    • /
    • 2000
  • Drop size distribution of an air-assisted fuel injector(AAFI) was investigated. Influence of parameters such as ambient air density supply pressure and air-liquid mass ratio(ALR) was examined through both measurement and analysis. The Sauter mean diameter$D_{32}$ varied from 9 to 25$\mu$m throughout all experimental conditions. An empirical correlation for droplet size was obtained. Analytical correlations for predicting $D_{32}$ with respect to operating conditions were also derived through energy consideration and introduction of a simplified model of the from the empirical fitting was adapted to the original equation the proposed correlation in this study matched more closely with measured results. The current correlation exhibited a favorable study matched more closely with measured results. The current correlation exhibited a favorable prediction for $D_{32}$ compared to that by the empirical correlation at selected experimental conditions so that it may be used to predict atomization performance of the AAFI at operating conditions which was not covered in the measurements. After validation the analytical equation was applied to survey the feasible operating conditions for gasoline direct injection application.

  • PDF

CHARACTERISTICS OF WALL IMPINGEMENT AT ELEVATED TEMPERATURE CONDITIONS ON GDI SPRAY

  • Park, J.;Im, K.S.;Kim, H.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2004
  • The direct injection gasoline spray-wall interaction was characterized inside a heated pressurized chamber using various visualization techniques, including high-speed laser-sheet macroscopic and microscopic movies up to 25,000 frames per second, shadowgraph, and double-spark particle image velocimetry. Two hollow cone high-pressure swirl injectors having different cone angles were used to inject gasoline onto a heated plate at two different impingement angles. Based on the visualization results, the overall transient spray impingement structure, fuel film formation, and preliminary droplet size and velocity were analyzed. The results show that upward spray vortex inside the spray is more obvious at elevated temperature condition, particularly for the wide-cone-angle injector, due to the vaporization of small droplets and decreased air density. Film build-up on the surface is clearly observed at both ambient and elevated temperature, especially for narrow cone spray. Vapor phase appears at both ambient and elevated temperature conditions, particularly in the toroidal vortex and impingement plume. More rapid impingement and faster horizontal spread after impingement are observed for elevated temperature conditions. Droplet rebounding and film break-up are clearly observed. Post-impingement droplets are significantly smaller than pre-impingement droplets with a more horizontal velocity component regardless of the wall temperature and impingement angle condition.

A Study on the Distribution of Droplet Velocity and Diameter in a High-Pressure Swirl Spray (와류형 고압 분무의 속도 및 입경분포에 관한 연구)

  • Choi, Dong-Seok;Ryu, Kyung-Hoon;Cha, Keun-Jong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1310-1319
    • /
    • 1999
  • High-pressure swirl injectors have usually been employed in Gasoline direct injection engines due to their spray characteristics and the feasibility of their control. Thus the microscopic characteristics of high-pressure swirl spray were investigated by PDA. The correlation between axial and radial velocities and the correlation between droplet size and axial velocity were examined with different axial and radial positions. Two dimensional droplet velocity and its number distribution with size-classified droplets were illustrated. The mean droplet velocity and its SMD were also analyzed at the center of spray, the position having maximum mean axial velocity, and the spray periphery using time dividing method. Finally, the structure of high-pressure swirl spray was presented with the size distribution and velocity profile of droplets.

Effects of intake flows on spray structure of a high pressure multi-hole injector in a second generation direct-injection gasoline engine (제 2세대 직접분사식 가솔린 기관에서 고압다공연료분사기의 분무 형상에 대한 흡기유동의 영향)

  • Kim, S.S.;Kim, S.H.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.18-25
    • /
    • 2007
  • 제 2세대 직접분사식 가솔린 기관에서 6공 연료분사기의 연료분무특성을 관찰하였다. 실험에 사용한 직접분사식 가솔린 기관은 2개의 흡입밸브와 2개의 배기밸브를 갖는 텀블형 Spray Guided 연소실과 Quartz로 제작된 실린더 라이너와 실린더 헤드 창으로 구성되어 있다. 선회유동을 유도하기 위하여 흡입매니폴드에 선회유동 제어밸브를 부착하였다. 2차원 Mie 스캐터링 기법을 이용하여 연료분사시기, 연료분사압력과 실린더 내 유동 및 냉각수 온도가 연료분무에 미치는 영향을 관찰하였다. 실험결과로는 흡기과정동안 흡기 선회유동은 분사된 연료의 공간적 분포에 크게 작용하였고, 압축과정동안에는 텀블 및 선회유동의 영향이 흡기과정에 비해 크지 않음을 확인하였다. 또한 성층연소를 위해서 압축과정에서 연료를 분사하는 경우 고압의 연료분사압은 분무도달거리의 성장을 촉진시키나 상승하는 피스톤과 이로 인한 실린더 압력의 상승으로 분무도달거리의 성장이 억제됨을 확인할 수 있었다.

  • PDF

Numerical Study on Wall Impingement Process of GDI Spray According to Wall Cavity Angle (벽면 캐비티 각에 따른 GDI 분무의 벽 충돌 과정에 대한 수치적 연구)

  • Shim, Young-Sam;Kim, Duck-Jool;Choi, Gyung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.971-978
    • /
    • 2007
  • A spray-wall impingement process of a hollow-cone fuel spray from the high-pressure swirl injector in the Gasoline Direct Injection (GDI) engine were experimented and calculated at various wall geometries. The Linearized Instability Sheet Atomization (LISA) & the Aerodynamically Progressed Taylor Analogy Breakup (APTAB) model and the Gosman model were applied to model the breakup and the wall impingement process of the hollow-cone fuel spray. The numerical modelings were implemented in the modified KIVA code. The calculation results of spray characteristics, such as a spray development process and a radial distance after wall impingement, compared with the experimental results by the Laser Induced Exciplex Fluorescence (LIEF) technique. The droplet size distribution and the ambient gas velocity field, which are generally difficult to obtain by the experimental methods, were also calculated and discussed. It was found that the radial distance after wall impingement and Sauter Mean Diameter (SMD) decreased with increasing a cavity angle.

Characteristics of Transient Performance in a Turbocharged GDI Engine with TiAl Turbine (TiAl 터빈을 적용한 과급 직분식 전기점화 엔진의 과도운전 성능특성)

  • Park, Chansoo;Jung, Jinyoung;Bae, Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.299-306
    • /
    • 2015
  • Turbocharged gasoline direct injection engine is one of promising technologies in the automotive industry. However, reduction in turbo-lag under transient operation is one of important challenging points to improve drivability. Engine transient performance was investigated in a 4-cylinder 2.0 L turbo-gasoline direct injection (T-GDI) engine using Inconel and TiAl (Titanium Aluminide alloy) turbine wheel turbochargers. The TiAl turbocharger performed superior transient boost pressure and torque rises under various engine transient operation conditions. These were mainly due to lower turbine rotational inertia of TiAl turbocharger. The Maximum boost pressure and torque build up were founded in 1500 rpm and 2000 rpm, instant load change from 20% to 100% of pedal position.

Study on Spray Characteristics of Single-Hole GDI Injector according to Nozzle Hole Diameter - (1) Comparison of Injection and Macroscopic Spray Characteristics (노즐 홀 직경에 따른 단공 GDI 인젝터의 분무 특성 연구 - (1) 분사 및 거시적 분무특성 비교)

  • Park, Jeonghyun;Ro, Seungcheon;Chang, Mengzhao;Park, Suhan
    • Journal of ILASS-Korea
    • /
    • v.25 no.4
    • /
    • pp.145-153
    • /
    • 2020
  • The purpose of this study is to compare the injection and spray characteristics of single-hole GDI injectors using injection rate and mie-scattering spray images. Five types of single-hole injectors with different nozzle hole diameters were used, and the spray rate, spray tip penetration, spray area, and spray width were analyzed. As a result, the diameter of the nozzle hole had a direct effect on the injection and spray characteristics. It was confirmed that the larger the diameter of the nozzle hole, the higher the injection quantity, the spray tip penetration, the spray area, and the spray width. In addition, it was confirmed that the near-field spray, which has little influence of ambient air, has a great correlation with the injection rate.

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.

Spray Characteristics of High-Pressure Injector in Direct-Injection Gasoline Engine (직분식 가솔린 기관 고압 인젝터의 연료 무화 특성)

  • 이창식;최수천;김민규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.1-6
    • /
    • 1999
  • An experimental study was carried out to investigate the global spray behavior and spray characteristics of high-pressure fuel injector in the direct-injection goasoline enginet. The atomization characteristics of fuel spary such as mean droplet size, mean velocity , and velocity distribution were measured by the phase Doppler particle analyzer. The spray tip penetration and spray width were investigated by the result fo visualizaiton experiment. The quantitiative spary characteristics of injector spray were measured under various sparay conditions and ambient pressures. The results of experiment show that the increase in ambient pressure have influence on the spray tip penetration and spray development process. Also, the influence of injection pressure and measuring location on the mean velocity and droplet size distribution were discussed.

  • PDF