• Title/Summary/Keyword: Gaseous pollutant

Search Result 55, Processing Time 0.027 seconds

A Simulation Study on the Gasifier Performance in the Coal/Biomass Mixture (석탄과 바이오매스 혼합공급에 따른 가스화 특성 모사 연구)

  • Wang, Hong-Yue;Shim, Hyun-Min;Kim, Hyung-Taek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.784-787
    • /
    • 2007
  • A process flowsheet simulation model based on ASPEN PLUS was developed to investigate the effect of co-gasification of coal and rice husk on the gasifier performance and pollutant emissions in IGCC power plant. The analyses were done for an 02-blown, pulverized gasifier using coal and rice husk as feedstock, parameter employed the blending ratio of rice husk in coal were investigated. From the simulation results, it was found that gaseous pollutant emissions were reduced substantially with the increase of the blending ratio of rice husk. An optimum range between 15% and 25% rice husk-to-coal ratio was found to be the optimum point in terms of gaseous pollutant emission per energy output for sui fur and nitrogen compounds.

  • PDF

Numerical study on the gaseous radioactive pollutant dispersion in urban area from the upstream wind: Impact of the urban morphology

  • Shuai Wang;Xiaolei Zheng;Jin Wang;Jianzhi Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2039-2049
    • /
    • 2024
  • The radioactive pollutant could migrate to the downstream urban area under the action of atmospheric dispersion due to the turbulent mixing under actual pollution accidents. A scenario in which radioactive contaminants from the upstream (for example, a nearshore nuclear power plant accident) migrates to the downstream urban blocks have been considered in this study. Numerical simulations using computational fluid dynamics (CFD) are then conducted to investigate the effects of the urban morphology (building packing density and layout) on the atmospheric dispersion of radioactive pollutants in this scenario. The building packing density and structure can significantly affect urban areas' mean flow pattern and the turbulent kinetic energy (TKE). The flow pattern and the TKE distribution influence the radioactive pollution dispersion. It is found that the radioactive pollution at the urban canyons is significantly affected by the vertical transport at the canyon. A comparison of the distributions of radioactive and traditional non-radioactive pollutants is also provided.

Development of Gaseous Pollutant Emission Factor by Incineration of Barley & Wheat among Agricultural Residues (영농부산물 소각에서 발생하는 가스상 오염물질의 배출계수 개발 -맥류를 중심으로-)

  • Min-Wook Kim;Joon-Young Roh;Ji-Yun Woo;Dong-Eun Lee;Hong-Sung Chang;Seung-Jin Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.444-449
    • /
    • 2023
  • The current study involved the calculation of air pollutant emission factors (EFs) generated from the incineration of agricultural residues. The process included sample collection, weight measurement, moisture measurement, incineration system configuration, and concentration measurement. The average CO emission factor of gaseous air pollutants from the incineration of barley and wheat agricultural residues was calculated as 0.08289 kg/kg and 0.06665 kg/kg, respectively, whereas the average NOX emission factor for barley and wheat agricultural residues was determined to be 0.00518 kg/kg and 0.00185 kg/kg, respectively. In the existing air pollutant emission calculation manual, the EF is presented only for barley. Therefore, in this study, we have introduced the EF for wheat, previously absent in the calculation manual. Additionally, the air pollutant calculation manual presents the EF of air pollutants as one value, but in this study, EF values corresponding to 2.5% and 97.5% were presented in consideration of the distribution of experimental values as shown in EMEP/EEA data.

Source Identification of PM2.5 at the Tokchok Island on the Yellow Sea (황해상 덕적도 PM2.5오염원의 확인)

  • 윤용석;배귀남;김동술;황인조;이승복;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.317-325
    • /
    • 2002
  • An air pollution monitoring station has been operated at Tokchok Island since April 1999 to characterize the background atmosphere in the vicinity of the Yellow Sea. In this study, eight chemical species in PM$_{2.5}$ and three gaseous species were analyzed. A total of 53 samples were collected for the analysis of PM$_{2.5}$ and gaseous species from April, 1999 to April, 2001. The overall mean mass concentration of PM$_{2.5}$ was 20.8 $\mu\textrm{g}$/㎥ and the eight soluble ionic species accounted for about 46.8% of PM$_{2.5}$ mass. Approximately 80% of samples appeared to experience the chloride loss effect. Air pollutant sources of PM$_{2.5}$ measured at Tokchok Island were qualitatively identified by the principal component analysis. It was found that five principal components are secondary aerosol, soil, incineration, phase change of nitrate, and ocean.and ocean.

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Measurements of Gaseous Pollutants in Major Tunnels in Seoul (서울시 주요 터널내 기체상 오염물질 농도 측정)

  • 김영성;경남호;손재익;문길주;김용표;백남준;김태오
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.320-328
    • /
    • 1993
  • Gaseous pollutants in Namsan Nos. 1, 2, and 3 tunnels and Pukak tunnel were measured along the road by an air-monitoring van from the evening of February 9 to the morning of February 12 in 1993. Average concentrations of pollutants in Namsan tunnels were 9.2-13.5 ppm CO and 0.037-0.047 ppm SO$_{2}$. Average concentrations of SO$_{2}$ in Pukak tunnel was 0.79 ppm, higher than those in Namsan tunnels, due to the traffic of heavy-duty buses and trucks. The pollutant concentrations in Namsan tunnesl could be explained by emission of passenger cars using unleaded gasolin and LPG taxies. Average concentration of NO$_{x}$ in Namsan tunnels was at least 1.1 ppm, estimated from the emission factor of pasenger cars using unleaded gasoline. Pollutant concentrations in Namsan No. 3 tunnel were higher at the exit because of the piston action of air mass in the tunnel provided by the traffic. Fans installed at Namsan and Pukak tunnes could be useful, but their flushing action of ambient air in the tunnel was not clearly observed.d.

  • PDF

Implications of Air Pollution Effects on Athletic Performance

  • Pierson, W.E.;Covert, D.S.;Koenig, J.Q.;Namekata, T.;Kim, Y.S.
    • Journal of Environmental Health Sciences
    • /
    • v.11 no.2
    • /
    • pp.1-16
    • /
    • 1985
  • There are a large number or chemical compounds that are present in a polluted atmosphere and that alone or in combination are important to consider for their potential effect on the respiratory system and impact on athletic performance. A general categorization or description of the level of pollution in terms of the concentration of one or more compounds or by type such as oxidizing compounds is inadequate and misleading. A useful initial categorization of pollutant compounds according to their mechanism of production, primary or secondary, is often made. For health effects, consideraiions of the physical state, gaseous or particulate, and the solublity and reactivity of the pollutant is also important. Pollutant compounds or substances that are emitted directly from a source and that undergo little or no chemical change in the atmosphere from source to receptor are termed primary pollutants.

  • PDF

A Study on the Control Performance for Hazardous Gases by Surface Discharge induced Plasma Chemical Process (연면방전의 플라즈마 화학처리에 의한 유해가스제어 성능에 관한 연구)

  • 이주상;김신도;김광영;김종호
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.185-190
    • /
    • 1995
  • Recently, because of the worse of the air pollution, the excessive airtught of building and the inferiority of air conditioning system, the development of high efficiency air purification technology was enlarged to the environmental improvement of an indoor or a harmful working condition. The air purification technology has used chemical filters or charcoal filters or charcoal to remove hazardouse gaseous pollutants (SO$_{x}$, NO$_{x}$, NH$_{3}$, etc.) by air pollutant control technology, but they have many problems of high pressure loss, short life, wide space possession, and treatment of secondary wastes. For these reason, the object of reasearch shall be hazardous gaseous pollutants removal by the surface discharge induced plasma chemical process that is A.C. discharge of multistreams applied A.C. voltage and frequency between plane induced eletrode and line discharge eletrode of tungsten, platinum or titanium with a high purified alumina sheet having a film-like plane. As a result, the control performance for hazardous gaseous pollutants showed very high efficiency in the normal temperature and pressure. Also, after comtact oxidation decomposition of harmful gaseous pollutants, the remainded ozone concentration was found much lower than that of ACGIH or air pollution criteria in Korea.rea.

  • PDF

Evaluation of Analytical Techniques for Some Gaseous Criteria Pollutants through a Field Measurement Campaign in Seoul, Korea (현장측정에 기초한 대기오염물질의 측정방식에 대한 비교연구-주요 기준성 오염물질을 중심으로)

  • 김세웅;김기현;김진석;이강웅;김경렬;문동민;김필수;손동헌
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.4
    • /
    • pp.403-415
    • /
    • 1999
  • To properly assess air pollution levels, application of quality assurance and quality control(QA/QC) is believed to be an essential step. In order to cope with such scientific principle, a field study was designed with an aim of comparing: 1) the methods of calibration for airborne pollutants and 2) the protocols developed for their measurements. Measurements were made at Han Yang University, Seoul during 29 May through 1 June 1998 under the management of the Division of Measurements and Analysis(DMA) of Korean Society for Atmospheric Environment(KOSAE). In this work, we report our results of intercomparative measurements on several gaseous criteria pollutants that were investigated mainly by the two institutes-Seoul National University(SNU) and the Korean Research Institute for Standards and Science(KRISS). Although measurements of major gaseous pollutants had been made routinely by many scientific institutes and organizations in Korea, most scientists involved in those studieswere obliged to do their experiments on the basis of their own procedural steps spaning from the preparation of gaseous standards to the methodological selections for the calibration. Hence, this campaign offered a unique opportunity to examine many important aspects on the measurements of these important gaseous pollutants. In the course of our study, we investigated the compatibility of data sets obtained by the two institutes in concert with reference data sets collected concurrently from a government-managed monitoring station. On the basis of our study, we conclude that different data sets made by different participants during this campaign agree well within the reasonable range of uncertainties.low, which indicated that during this period the potential acidity of precipitation was high but the neutralizing capacity was low. For Spring, pAi was very low but pH was slightly high. This was likely due to the large amount of $CaCO_3$ in the soil particles transported over a long range from the Chinese continent that were incorporated into the precipitation, and then neutralized the acidifying species with its high concentraton.

  • PDF

A Numerical Study on the Toxic Gaseous and Solid Pollutant Dispersion in an Open Atmosphere (고-기상 유해물질 대기확산에 관한 수치해석)

  • 이선경;송은영;장동순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.1
    • /
    • pp.146-154
    • /
    • 1994
  • A series of numerical calculations are performed in order to investigate the dispersion mechanism of toxic gaseous and solid pollutants in extremely short-term and short range. The calculations are carried out in an open space characterized by turbulent boundary layer. The simulation is made by the use of numerical model, in which a control-volume based finite difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling problem. The Reynolds stresses are solved by two-equation, k-$\varepsilon$ model modified for buoyancy. The major parameters consider-ed in this study are temperature, velocity and Injection height of toxic gases, environmental conditions such as temperature and velocity of free stream air, and topographic factor. The results are presented and discussed in detail. The flow field is commonly characterized by the formation of a strong recirculation zone due to the upward motion of the hot toxic gas and ground shear stress. The driving force of the upward motion is explained by the effect of thermal buoyancy of hot gas and the difference of inlet velocity between toxic gas and free stream.

  • PDF