• 제목/요약/키워드: Gaseous jet

검색결과 35건 처리시간 0.02초

VOF법을 이용한 수중 제트의 수치해석 (Numerical analysis of submerged jet by VOF method)

  • 박근흥;김형준;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 춘계 학술대회논문집
    • /
    • pp.178-182
    • /
    • 2004
  • Numerical analysis of a gaseous jet submerged in a liquid environment was carried out using the volume of fluid(VOF) method to simulate the kinematics of the gas-liquid interface. Two nozzle geometries were tested, one for Fanno tube and the other for converging diverging nozzle. Commercial code was used for the present calculation. Transient behavior of a gaseous jet since its start showed periodic nature of the jet, which was also observed in previous measurements.

  • PDF

가스 및 분무화염의 연소소음 특성에 관한 실험연구 (Combustion Noise Characteristics in Gas and Liquid Flames)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

수직 간섭된 램공기 대류에 의한 충돌 분무의 미립화 촉진에 관한 연구 (Spray characteristics of impinging sprays introduced into the strongly convective flow)

  • 이상승;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.384-394
    • /
    • 2005
  • Important characteristics of impinging sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spay data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline increase. The maximum SMD appeared the top of the SMD distribution

  • PDF

수직 간섭된 램공기 대류에 의한 스월 분무의 미립화 촉진에 관한 연구 (Spray characteristics of swirl sprays introduced into the strongly convective flow)

  • 이상승;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.395-406
    • /
    • 2005
  • Important characteristics of swirl sprays intersected by a strongly convective gaseous cross flows were experimentally investigated. The breakup processes due to different Weber and Reynolds numbers of liquid and gas streams were visually examined with quantitative measurements of breakup lengths, penetration heights, and droplet sizes. Snapshot images and spray data evidenced that, at lower jet Reynolds number the breakup processes portrays the atomization profiles similar to typical column breakup of single orifice jet. At higher jet Reynolds numbers, disintegration of jet stream is significantly expedited by strong momentum transported from strongly convective gaseous stream. The breakup length and penetration height decreased as the convective flow increase. From the bottom the wall up, the SMD measured the centerline first increases and then decreases before again increasing.

  • PDF

기체구 분사 모델을 이용한 CNG DI 엔진의 연소특성 수치해석 (Numerical Study of Combustion Characteristics in CNG DI Engine using Gaseous Sphere Injection Model)

  • 최민기
    • 한국분무공학회지
    • /
    • 제24권4호
    • /
    • pp.171-177
    • /
    • 2019
  • This paper describes numerical study of combustion characteristics in CNG(compressed natural gas) DI(direct injection) engine using gaseous sphere injection model. Simulations were conducted using KIVA-3V Release 2 code. Gaseous sphere injection model, which is modified model of liquid fuel injection, was used to simulate the CNG direct injection. Until now, a very fine mesh smaller than the injector nozzle has been required to resolve the gas-jet inflow boundary. However, the gaseous sphere injection model simulates gaseous fuel injection using a coarse mesh. This model injects gaseous spheres as in liquid fuel injection and the gaseous spheres evaporate together without the latent heat of evaporation. Therefore, it does not require a very fine mesh and reduce calculation time. Combustion simulation were performed under various injection timings and injection pressures.

예혼합 화염이 벽면에 충돌시 열전달 및 연소특성에 관한 실험적 연구 (The Experimental Study for Heat Transfer and Combustion Characteristics of Gaseous Impinging Jet Premixed Flame)

  • 정은규;조경민;김호영
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.1-10
    • /
    • 1996
  • In the present study, the structure and the characteristics of gaseous premixed flame impinging normal to the flat plate have been investigated experimentally. For the examination of the heat transfer and combustion characteristics, measurements of temperature, direct and schlieren photography were performed. The results of present study show that the length of inner flame becomes smaller as distance from nozzle exit to plate decrease. The width of flame becomes larger as air-fuel ratio decreases. The smaller Reynolds number at nozzle exit and the smaller distance from nozzle exit to plate lead to the higher heat transfer rate in the region of center of plate. As the air-fuel ratio decreases, the heat transfer at plate with moderate rate occurs on wide region.

  • PDF

기체구 분사 모델을 이용한 CNG 직접분사식 인젝터 분사 수치해석 기법 (Modeling of CNG Direct Injection using Gaseous Sphere Injection Model)

  • 최민기;박성욱
    • 한국분무공학회지
    • /
    • 제21권1호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the modeling of CNG direct injection using gaseous sphere injection model. Simulation of CNG direct injection does not need break up and evaporation model compared to that of liquid fuel injection. And very fine mesh is needed near the injector nozzle to resolve the inflow boundary. Therefore it takes long computation time for gaseous fuel injection simulation. However, simulation of CNG direct injection could be performed with the coarse mesh using gaseous sphere injection model. This model was integrated in KIVA-3V code and RNG $k-{\varepsilon}$ turbulence model needs to be modified because this model tends to over-predict gas jet diffusion. Furthermore, we preformed experiments of gaseous fuel injection using PLIF (planar laser induced fluorescence)method. Gaseous fuel injection model was validated against experiment data. The simulation results agreed well with the experiment results. Therefore gaseous sphere injection model has the reliability about gaseous fuel direct injection. And this model was predicted well a general tendency of gaseous fuel injection.

Butane 및 propane의 비정상 난류 제트 특성에 관한 연구 (A study on Behavior of Turbulent Transient Jets with Butane and Propane)

  • 이범호;송학현;조승환;홍성태;이대엽;이태우
    • 한국분무공학회지
    • /
    • 제15권2호
    • /
    • pp.74-82
    • /
    • 2010
  • In order to understand the behavior of transient gaseous injection used in an LPG (Liquefied Petroleum Gas) engine, turbulent incompressible transient jets with butane and propane were measured and analyzed at pressures of 1.5 bar and 2.0 bar with injector diameters of 3 mm and 5 mm. Mie-scattering method with a tracer was used, and images were processed to investigate the behavior of butane and propane jets. Distances from the nozzle to transition region were measured as $L_e/d_{inj}$=4.35~19.4, where $L_e$ and $d_{inj}$ indicate respectively a distance from nozzle to transition point and nozzle diameter. Slits and tubes around jet at near-field were introduced to measure the effect of entrainment and the diameter of jet, which revealed that the entrainment of surrounding air is significant for developing jet diameter. When the entrainment is restricted, the behavior of jet became deviating from the baseline. It was found that the virtual origin located outside of a nozzle towards jet tip within the conditions of this work, and its location was estimated as $x_o/d_{inj}$=0.56~7.25, where $x_o$ is a distance from nozzle to virtual origin.

초임계 압력에서 기체수소/액체산소의 연소과정 해석 (Analysis of Gaseous Hydrogen/liquid Oxygen Combustion Processes at Supercritical State)

  • 김태훈;김성구;김용모
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.189-194
    • /
    • 2010
  • This study has been mainly motivated to numerically model the transcritical mixing and reacting flow processes encountered in the liquid propellant rocket engines. In the present approach, turbulence is represented by the extended k-$\varepsilon$ turbulence model. To account for the real fluid effects, the propellant mixture properties are calculated by using SRK (Souve-Redlich-Kwong) equation of state model. In order to realistically represent the turbulence-chemistry interaction in the turbulent non-premixed flames, the flamelet approach based on the real fluid flamelet library has been adopted. Based on numerical results, the detailed discussions are made for the real fluid effects and the precise structure of the transcritical cryogenic liquid nitrogen jet and gaseous hydrogen/liquid oxygen coaxial jet flame.

Influence of Thermodynamic Properties upon Transcritical Nitrogen Injection

  • Tani, Hiroumi;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.320-329
    • /
    • 2008
  • The influence of thermodynamic transition associated with transcritical nitrogen injection upon the flow structure was investigated to explore numerical simulation of the injectant dynamics of oxygen/hydrogen coaxial jet in liquid rocket engines. Single and coaxial nitrogen jets were treated by comparing the transcritical and perfect-gaseous conditions, wherein the numerical model was accommodative to the real-fluid thermodynamics and transport properties at supercritical pressures. The model was in the first place validated by comparing the results of transcritical nitrogen injection between calculations and available experiments. For a single jet under the transcritical condition, the nitrogen kept a relatively high density up to its pseudo-critical temperature inside the mixing layer, since it remains less expanding until heated up to its pseudo-critical temperature. Numerical analysis revealed that cryogenic jets exhibit strong dependence of specific enthalpy profile upon the associated density profile that are both dominated by turbulent thermal diffusion. In the numerical model, therefore, exact evaluation of turbulent heat fluxes becomes very important for simulating turbulent cryogenic jets under supercritical pressures. Concerning the coaxial jets due to transcritical/gaseous nitrogen injections, the density profile inside the mixing layer was again affected by the thermodynamic transition of nitrogen. However, hydrodynamic instability modes of the inner jet did not show significant differences by this thermodynamic transition, so that further study is needed for the mixing process downstream of the near injection position.

  • PDF