• Title/Summary/Keyword: Gaseous flow

Search Result 196, Processing Time 0.025 seconds

A Study on On-site Discharge Testing for Carbon Dioxide Fire Extinguishing Systems (이산화탄소 소화설비 현장 방출시험 방법론에 관한 고찰)

  • Park, Jun-Hyun;Kang, Tae-Seok;Kim, Jae-Hwan;Kim, Wee-Kyong
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.26-32
    • /
    • 2015
  • Carbon dioxide principally extinguishes fires by smothering, but an acceptable amount of extinguishing agent is needed. To assure the performance of carbon dioxide systems in Korea, computer programs certified by NEMA are being applied in system design. But the design errors can occur because the geometry of a model test facility is not the same as that of the actual fire area. Since the discharge rate tends to vary considerably with the flow pattern in a pipe, an on-site discharge test is necessary to ensure the performance of the system, especially with low pressure carbon dioxide. Technical standards for carbon dioxide systems do not give detailed guidelines for discharge tests at present. Based on comparative analysis of standards and practical tests, this paper suggests a methodology for on-site discharge tests.

Photocatalytic removal of NOx using TiO2-coated zeolite

  • Mendoza, Joseph Albert;Lee, Dong Hoon;Kang, Joo-Hyon
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.291-296
    • /
    • 2016
  • Application of photocatalytic nanoparticles has been recently gaining an increased attention as air purifying material for sustainable urban development. The present work reports the photocatalytic removal of gaseous phase nitrogen oxides ($NO_x$) using $TiO_2$-coated zeolite to be applied as a filter media for the urban green infrastructure such as raingardens. The $TiO_2$-coated zeolite was synthesized by simple wet chemistry method and tested in a continuous-flow photo-reactor for its removal efficiency of $NO_x$ under different conditions of the weight percentage of $TiO_2$ coated on the zeolite, and gas retention time. The removal efficiency of $NO_x$ in general increased as the weight percentage of $TiO_2$ coated on the zeolite increased up to 15-20%. Greater than 90% of $NO_x$ was removed at a retention time of one minute using the $TiO_2$-coated zeolite ($TiO_2$ weight percentage = 20%). Overall, $TiO_2$-coated zeolite showed greater efficiency of $NO_x$ removal compared to $TiO_2$ powder probably by providing additional reaction sites from the porous structure of zeolite. It was presumed that the degradation of $NO_x$ is attributed to both the physical adsorption and photocatalytic oxidation that could simultaneously occur at the catalyst surface.

Comparison of Combustion Characteristic with GN2O and GOX as Oxidizer in Hybrid Rocket (하이브리드 로켓의 산화제 종류에 따른 고체연료 연소특성 비교)

  • Lee, Jung-Pyo;Cho, Sung-Bong;Kim, Soo-Jong;Yoon, Sang-Kyu;Park, Su-Hayng;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.223-227
    • /
    • 2006
  • In this study, the combustion characteristics was studied with various oxidizer in hybrid propulsion system. In this experiments $GN_2O$ and GOX were used as oxidizer, and PE was used as fuel. The combustion behavior was explained by flame temperature with mass O/F ratio, and the use of $GN_2O$ as the oxidizer caused a increase in combustion efficiency with GOX in the same hybrid motor. The mass flow rate of gaseous oxidizer was controlled by the several chocked orifices that have different diameter, and the oxidizer supply range was $0.0138{\sim}0.0427kg/sec$. As result, the empirical relation for oxidizer type was represented by mass flux of solid fuel, it was obtained with mass transfer number, and mass flux of oxidizer.

  • PDF

Design and Performance Tests of a Cryogenic Blower for a Thermal Vacuum Chamber (열진공 챔버용 극저온 블로워 설계 및 성능평가)

  • Seo, Heejun;Cho, Hyokjin;Park, Sungwook;Moon, Gueewon;Huh, Hwanil
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.1008-1015
    • /
    • 2015
  • Thermal vacuum test should be performed prior to launch to verify satellites' functionality in extremely cold/hot temperatures and vacuum conditions. A thermal vacuum chamber used to perform the thermal vacuum tests of a satellite system and its components. A cryogenic blower is a core component of the gaseous nitrogen (GN2) closed loop thermal control system for thermal vacuum chambers. A final goal of this research is development of cryogenic blower. Design requirements of a blower are 150 CFM flow rate, 0.5 bara pressure difference, hot and cold temperatures. This paper describes the performance analysis of impeller by 1D, CFD commercial software, the design of the thermal protection interface between the driving part and the fluid part. The performance of the cryogenic blower is confirmed by test at the standard air condition and is verified by on the thermal vacuum chamber at the real operating condition.

IODINE REMOVAL EFFICIENCY IN NON-SUBMERGED AND SUBMERGED SELF-PRIMING VENTURI SCRUBBER

  • Ali, Majid;Yan, Changqi;Sun, Zhongning;Gu, Haifeng;Wang, Junlong;Khurram, Mehboob
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.203-210
    • /
    • 2013
  • The objective of this conducted research is to study the iodine removal efficiency in a self-priming venturi scrubber for submerged and non-submerged operating conditions experimentally and theoretically. The alkaline solution is used as an absorbent, which is prepared by dissolving sodium hydroxide (NaOH) and sodium thiosulphate ($Na2S_2O_3$) in water to remove the gaseous iodine ($I_2$) from the gas. Iodine removal efficiency is examined at various gas flow rates and inlet concentrations of iodine for submerged and non-submerged operating conditions. In the non-submerged venturi scrubber, only the droplets take part in iodine removal efficiency. However, in a submerged venturi scrubber condition, the iodine gas is absorbed from gas to droplets inside the venturi scrubber and from bubbles to surrounding liquid at the outlet of a venturi scrubber. Experimentally, it is observed that the iodine removal efficiency is greater in the submerged venturi scrubber as compare to a non-submerged venturi scrubber condition. The highest iodine removal efficiency of $0.99{\pm}0.001$ has been achieved in a submerged self-priming venturi scrubber condition. A mathematical correlation is used to predict the theoretical iodine removal efficiency in submerged and non-submerged conditions, and it is compared against the experimental results. The Wilkinson et al. correlation is used to predict the bubble diameter theoretically whereas the Nukiyama and Tanasawa correlation is used for droplet diameter. The mass transfer coefficient for the gas phase is calculated from the Steinberger and Treybal correlation. The calculated results for a submerged venturi scrubber agree well with experimental results but underpredicts in the case of the non-submerged venturi scrubber.

The Effect of Fuel Injection Timing on Combustion and Power Characteristics in a DI CNG Engine (직분식 CNG 엔진에서 연료 분사시기의 변화가 연소 및 출력 특성에 미치는 영향)

  • Kang, Jeong-Ho;Yoon, Soo-Han;Lee, Joong-Soon;Park, Jong-Sang;Ha, Jong-Yul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.193-200
    • /
    • 2007
  • Natural gas is one of the most promising alternatives to gasoline and diesel fuels because of its lower harmful emissions, including $CO_2$, and high thermal efficiency. In particular, natural gas is seen as an alternative fuel for heavy-duty Diesel Engines because of the lower resulting emissions of PM, $CO_2$ and $NO_x$. Almost all CNG vehicles use the PFI-type Engine. However, PFI-type CNG Engines have a lower brake horse power, because of reduced volumetric efficiency and lower burning speed. This is a result of gaseous charge and the time losses increase as compared with the DI-type. This study was conducted to investigate the effect of injection conditions (early injection mode, late injection mode) on the combustion phenomena and performances in the or CNG Engine. A DI Diesel Engine with the same specifications used in a previous study was modified to a DI CNG Engine, and injection pressure was constantly kept at 60bar by a two-stage pressure-reducing type regulator. In this study, excess air ratios were varied from 1.0 to the lean limit, at the load conditions 50% throttle open rate and 1700rpm. The combustion characteristics of the or CNG Engine - such as in-cylinder pressure, indicated thermal efficiency, cycle-by-cycle variation, combustion duration and emissions - were investigated. Through this method, it was possible to verify that the combustion duration, the lean limit and the emissions were improved by control of injection timing and the stratified mixture conditions. And combustion duration is affected by not only excess air ratio, injection timing and position of piston but gas flow condition.

Spray Characteristics of Swirl-coaxial Injector According to the Recess Length and Injection Pressure Variation (리세스 길이 및 분사압력 변이에 따른 스월 동축형 인젝터의 분무특성)

  • Bae, Seong Hun;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.68-76
    • /
    • 2016
  • This research is carried out for the performance evaluation of the injector that is one of the critical components of bipropellant-rocket-engine. Spray characteristics are investigated in detail according to the recess length and injection pressure on the swirl-coaxial-injector using gaseous methane and liquid oxygen as propellants. A visualization is conducted by the Schlieren photography that is composed of a light source, concave mirrors, knife, and high-speed-camera. A hollow-cone-shape is identified in the liquid spray that is spread only by inner injector and the spray angle is decreased due to the diminution of swirl strength in accordance with the increase of the length of injector orifice. When the injector sprays the liquid through the inner injector with the aid of gas through the outer injector, the spray angle in external mixing region tends to increase with rise of the recess length, while in internal mixing region, it is decreased. It is also confirmed that the same tendency of the spray angle with recess length appears irrespective of the injection pressure of liquid spray.

Effect of Absorbent Thickness on the Noise Level Reduction of Fire-Extinguishing Nozzle (흡음재 두께가 소화노즐 소음도 저감에 미치는 영향)

  • Kim, Hak-Sun;Hwang, In-Ju;Kim, Youn-Jea
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In a gas system fire extinguishing system, extinguishing agents are usually stored with approximately 280 bar at $21^{\circ}C$ and are released at approximately 8 MPa through the decompression valve and orifice to quickly suppress the fire. When extinguishing agents are discharged, they cause a loud noise (approximately 140 dB), which can damage electronics, such as hard disk drives (HDDs). Therefore, the noise is becoming a serious issue in the gas extinguishing system. The method of the noise reduction by adding an absorbent is most general and in this study, the thickness of the absorbent was as a selected design variable. The noise level at the observation point and the flow characteristics inside the nozzle were numerically calculated and analyzed using the commercial code ANSYS CFX ver. 18.1.

Study of hydrodynamics and iodine removal by self-priming venturi scrubber

  • Jawaria Ahad;Talha Rizwan ;Amjad Farooq ;Khalid Waheed ;Masroor Ahmad ;Kamran Rasheed Qureshi ;Waseem Siddique ;Naseem Irfan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.169-179
    • /
    • 2023
  • Filtered containment system is a passive safety system that controls the over-pressurization of containment in case of a design-based accidents by venting high pressure gaseous mixture, consisting of air, steam and radioactive particulate and gases like iodine, via a scrubbing system. An indigenous lab scale facility was developed for research on iodine removal by venturi scrubber by simulating the accidental scenario. A mixture of 0.2 % sodium thiosulphate and 0.5 % sodium hydroxide, was used in scrubbing column. A modified mathematical model was presented for iodine removal in venturi scrubber. Improvement in model was made by addition of important parameters like jet penetration length, bubble rise velocity and gas holdup which were not considered previously. Experiments were performed by varying hydrodynamic parameters like liquid level height and gas flow rates to see their effect on removal efficiency of iodine. Gas holdup was also measured for various liquid level heights and gas flowrates. Removal efficiency increased with increase in liquid level height and gas flowrate up to an optimum point beyond that efficiency was decreased. Experimental results of removal efficiency were compared with the predicted results, and they were found to be in good agreement. Maximum removal efficiency of 99.8% was obtained.

An Assessment on the Behavior of Nitrogenous Materials during the First High-rate Phase in Composting Process (퇴비화 공정의 1차 발효단계에서 질소성 물질의 거동 평가)

  • Jeong, Yeon-Koo;Kim, Jin-Soo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.3
    • /
    • pp.81-88
    • /
    • 2000
  • Composting of N-rich wastes such as food waste and wastewater sludges can be associated loss of with substantial gaseous N, which means loss of an essential plant nutrient but may also lead to environmental pollution. We investigated the behavior of nitrogenous materials during the first high-rate phase in composting of food waste. Air dried food waste was mixed with shredded waste paper or wood chip and reacted in a bench scale composting reactor. Samples were analyzed for pH, ammonia, oxidized nitrogen and organic nitrogen. The volatilized ammonia nitrogen was also analyzed using sulfuric acid as an absorbent solution. Initial progress of composting reaction greatly influenced the ammonification of organic nitrogen. A well-balanced composting reaction with an addition of active compost as an inoculum resulted in the promoted mineralization of organic nitrogen and volatilization of ammonia. The prolongation of initial low pH period delayed the production of ammonia. It was also found that nitrogen loss was highly dependent on the air flow supplied. With an increase in input air flow, the loss of nitrogen as an ammonia also increased, resulted in substantial reduction of ammonia content in compost. The conversion ratio of initial nitrogen into ammonia was in the range of 28 to 38% and about 77~94% of the ammonia produced was escaped as a gas. Material balance on the nitrogenous materials was demonstrated to provide an information of importance on the behavior of nitrogen in composting reaction.

  • PDF