• Title/Summary/Keyword: Gaseous

Search Result 1,371, Processing Time 0.044 seconds

Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction (기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사)

  • 유용호;어경훈;송은석;이성철;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.563-569
    • /
    • 1999
  • The numerical simulation method was utilized to investigate the optimal condition for synthesizing ultrafine SiC powders by using $TMS[Si(CH_3)_4]-H_2$ gaseous mixtures in the horizontal reactor. As a result of the theoretical analysis, the conversion percentage of TMS source was increased with increasing reaction temperature, however, which was decreased with increasing H$_2$flow rate. Though the SiC particles concentration synthesized was decreased with increasing the reaction temperature due to the higher collision rate in the gas phase, they were increased with increasing the H$_2$flow rate and TMS concentration. The SiC particle size showed a tendency to become larger as the reaction temperature and the initial TMS concentration were increased and smaller as the H$_2$ flow rate was increased. The variation of experimental particle size with the reaction temperature, H$_2$flow rate and TMS concentration was agreed with the theoretical results.

  • PDF

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Antimicrobial Mechanisms of Nitric Oxide and Strategies for Developing Nitric Oxide-based Antimicrobial Agents (산화질소가 미생물에 미치는 영향 및 이를 이용한 항균전략)

  • Choi, Eun Young;Noh, Jin-Ki;Hasan, Nurhasni;Yoo, Jin-Wook
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • Nitric oxide (NO), which has been recognized as an integral molecule in maintaining homeostasis, plays an important role in host defense against microbes. NO has diverse antimicrobial mechanisms by directly and/or indirectly interacting with microbes. Under the circumstance that there is an urgent need for a new class of antimicrobial agents due to antibiotic resistance, much effort has been made to develop a NO-based antimicrobial agent. In order to make it possible, strategies to store and release NO in a controlled manner are required because NO has a gaseous property and a very short half-life. In this review, we described NO biochemistry and its mechanisms of antimicrobial activity. In additions, we introduced various NO-releasing systems that improve NO's antimicrobial activity.

Analysis of Exposure Doses and Determination of Atmospheric Diffusion Coefficients (피폭선량 해석과 대기확산계수 결정)

  • Kim, Byung-Woo;Han, Moon-Hwee;Lee, Young-Bok;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 1984
  • The exposure doses by the radioactive gaseous effluents from nuclear power plants are investigated in the two cases of normal operation and hypothetical accident. Gaussian equation is adapted in the normal operation as the diffusion model of effluents for long period, which uses annual average meteorological data. But the real time models have been used in the case of accidents which analyze the changes of wind direction and speed. In this study the annual exposure doses by the normal operation of Kori unit 1 during $1977{\sim}1982$ were calculated on the basis of the atmospheric diffusion factor by the Gaussian straight line model. And the image processing technique was suggested as the effective method through the wind tunnel experiments to get the characteristic value of atmospheric diffusion coefficient required especially in the accidents of nuclear power plants.

  • PDF

Air Pollutant Variations Observed at Deokjeok Island in the Yellow Sea During April 1999 to June 2000 (1999년 4월부터 2000년 6월까지 황해 덕적도에서 관찰된 대기오염물질 변화 특성)

  • 김영성;이승복;김진영;배귀남;문길주;원재광;윤순창
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.4
    • /
    • pp.347-361
    • /
    • 2003
  • Sulfur dioxide (SO$_2$), ozone, total suspended particulates (TSP) and PM$_{2.5}$ were measured at Deokjeok Island in the Yellow Sea during April 1999 to June 2000. Although the emission amount of air pollutants is quite low in this small island of 36 km$^2$ with 1.4 thousand inhabitants, there are pollutant sources such as an oil -firing power plant and a wharf for ferryboat. The island is also influenced from the emissions from the greater Seoul area in the east and from China in the west. In order to characterize the pollutant variations due to interactions between transport and local emissions. the correlation between variations of SO$_2$ and ozone was investigated. Mass and ion concentrations of TSP and PM$_{2.5}$ were examined on selected episode days of positive and negative correlations between the two gaseous species in spring and winter. The effects of transport were pronounced on the days of positive correlation in spring with higher concentrations of ozone and PM$_{2.5}$. TSP concentrations were also high on these days because of high wind speeds. On the days of negative correlation in spring, frequent fog associated with low wind speeds facilitated SO$_2$ oxidation and increased sulfate accompanied with decrease in nitrate in PM$_{2.5}$ and chloride in TSP. This latter phenomena was noticeable since it showed that chemical composition of fine particles could be significantly altered not only during the transport but also by local environment.ronment.

Numerical Simulation Study on Gas-Particle Two-Phase Jets in a Crossflow (I) -Two-Phase Jet Trajectory and Momentum Transfer Mechanism- (고체입자가 부상된 자유 횡분류 유동에 대한 전산모사 연구 (I) -2상 분류궤적과 운동량 전달기구-)

  • 한기수;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.252-261
    • /
    • 1991
  • A particle trajectory model to simulate two-phase particle-laden crossjets into two-dimensional horizontal free stream has been developed to study the variations of the jet trajectories and velocity variations of the gaseous and the particulate phases. The following conclusions may be drawn from the predicted results, which are in agreement with experimental observations. The penetration of the two-phase jet in a crossflow is greater than that of the single-phase jet. The penetration of particles into the free stream increases with increasing particle size, solids-gas loading ratio and carrier gas to free stream velocity ratio at the jet exit. When the particle size is large, the solid particles separate from the carrier gas , while the particles are completely suspended in the carrier gas for the case of small size particles. As the particle to carrier gas velocity ratio at the jet exit is less than unity, the particles in the vicinity of the jet exit are accelerated by the carrier gas. As the injection angle is increased, the difference of the particle trajectory from that of the pure gas becomes larger. Therefore, it can be concluded that the velocities and trajectories of the particle-laden jets in a crossflow change depending on the solids-gas loading ratio, particle size, carrier gas to free stream velocity ratio and particle to gas velocity ratio at the jet exit.

The Interaction of Gaseous Diffusion Flames (기체확산 화염간의 상호작용)

  • 김호영;전철균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.355-365
    • /
    • 1991
  • New definition for the interaction of flames is introduced and interacting turbulent diffusion flames issuing from two rectangular nozzles are investigated on the basis of the definition. Theoretical study through numerical model is carried out and experiment for validation is conducted. The characteristics of interaction due to the variation of major parameters such as nozzle spacing, Reynolds number and nozzle aspect ratio are studied. Results show that strong interaction occurs for small nozzle spacing, small Reynolds number and large aspect ratio. In order of their magnitude, the intensity of interactions on the individual transport mechanism is momentum, heat and mass. It is also found that interaction makes flames longer, tilted and finally merged. Increase of velocities and temperature, decrease of oxygen concentration and depression of turbulence are occurred in the region between flames.

Lab sacle의 섬유상담체를 이용한 VOCs 제거

  • Jang, Jeong-Gyun;Choe, Hwan-Seok;Park, Ju-Yeong;Cha, Jin-Myeong;O, Min-Ha;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.552-555
    • /
    • 2001
  • This work reported concerns the removal of mixtures of methyl ethyl ketone (MEKJ, methyl isobutyl ketone (MIBK) and BTXs, which find wide application as industrial solvents, using the biofilter by the microbial consortium, The biofilter was constructed from acryl columns and was 400 mm in length and 55 mm in diameter and the height of fibrous packing material which made of PVC was 160 111111, 8 seconds of the retention time, pH 6.5 - 7.5 and the initial inlet concentration of MEK, MIBK and BTXs were 220 ppm. The removal efficiency of the gaseous mixtures was relatively low during the initial 2 days after inoculum of the microbial consortium, after 3 days, however, the efficiency was increased remarkably. In this study, The removal efficiency of the biofilter for the mixtures show the high degree from one day after inoculum of the microbial consortium, having no relation to the fluctuation of the inlet concentration of MEK, MIBK and BTXs.

  • PDF

A Survey of Elementary School Students' Conceptions of Gas and an Analysis on the Type of Alternative Conceptions of Gas (기체에 대한 초등학생들의 개념 조사 및 대안 개념 유형 분석)

  • Jung, Dai-Kyun;Lee, Hea-Jung;Jeong, Sun-Hee;Oh, Chang-Ho;Park, Kuk-Tae
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.4
    • /
    • pp.359-371
    • /
    • 2007
  • The purpose of this study was to investigate elementary school students' conceptions of gas and analyse the type of alternative conceptions of gas which students constructed. To appreciate the conceptions formed by elementary school students on this topic, 173 sixth grade students from an elementary school located in Suwon participated in this study. Additionally, their conceptions and their alternative conceptions of gas represented by the questionnaires were analyzed. The questionnaires consisted of 11 questions related to the conception of gas. To analyze the types of alternative conceptions which presented themselves, constructed prototypes were generated by interviewing the students themselves. From our results, we suggest that sixth grade elementary school students have various conceptions of gas and tend to think that gas is weighty, and that gaseous volume decreases by pressure. However, their conceptions of gas melting in water were very low, as only about 16% of students were aware of this scientific conception. Students who did not understand precisely the conception of the nature of oxygen, carbon dioxide and hydrogen were over 20%. The results of the interviews showed that the construction of alternative conceptions of gas was affected by various and complex causes.

  • PDF

A study on the Poly-$Si_{1-x}Ge_x$ thin film deposition (I) Variation of the deposition rate and Ge composition with deposition parameters (다결정 $Si_{1-x}Ge_x$박막 증착에 관한 연구(I) 증착변수에 따른 증착속도 및 Ge조성 변화)

  • 이승호;어경훈;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.578-588
    • /
    • 1997
  • Poly-$Si_{1-x}Ge_x$ films on oxidized Si wafer were prepared by rapid thermal chemical vapor deposition using the $SiH_4$ and $GeH_4$ gaseous mixture at various deposition conditions. The deposition temperature, $SiH_4\;: GeH_4$ flow ratio and pressure were varied from 400 to $600^{\circ}C$, 1 : 0.1-2 : 1 and 1 to 50 torr, respectively. In this work, we have investigated the change of Ge composition of poly-$Si_{1-x}Ge_x$ films deposited with the variation of deposition parameters and the effect of Ge composition on the deposition rate. From the experimental results, it was observed that the deposition rate increased with increasing deposition temperature and Ge composition. On the other hand, the Ge composition decreased with increasing temperature. As the deposition pressure increased, the deposition rate and Ge composition were increased linearly to 10 torr but increased slowly above it, which has been attributed to the slower rate of surface reaction than mass transfer.

  • PDF