• Title/Summary/Keyword: Gaseous

Search Result 1,368, Processing Time 0.029 seconds

Atmospheric Dispersion Assessment for Potential Accidental Releases at Yonggwang Nuclear Power Plants (영광원전에서 가상 사고시 대기확산 평가)

  • Na, Man-Gyun;Sim, Young-Rok;Jung, Chul-Kee;Lee, Goung-Jin;Kim, Soong-Pyung;Chung, Sung-Tai
    • Journal of Radiation Protection and Research
    • /
    • v.25 no.2
    • /
    • pp.81-87
    • /
    • 2000
  • XOQ_DW code is currently used to assess the atmospheric dispersion fur the routine releases of radioactive gaseous effluents at Yonggwang nuclear power plants. This code was developed based on XOQDOQ code and an additional code is required to assess the atmospheric dispersion for potential accidental releases. In order to assess the atmospheric dispersion fer the accidental releases, XOQAR code has been developed by using PAVAN code that is based on Reg. Guide 1.145. The terrain data of XOQ_DW code inputs and the relative concentrations (X/Q) of XOQ_DW code outputs are used as the inputs of the XOQAR code through the interface with XOQ_DW code. By using this code, the maximum values of X/Q at exclusion area and low population zone boundaries except for sea areas were assessed as $1.33{\times}10^{-4}$ and $7.66{\times}10^{-6}$ sec/$m^3$, respectively. Through the development of this code, a rode system is prepared for assessing the atmospheric dispersion for the accidental releases as well as the routine releases. This developed code ran be used for other domestic nuclear power plants by modifying the terrain input data.

  • PDF

Effect of Lilium davidi's Root Powder Additions on the Rheology of the Dough and Processing Adaptability for Bread (백합 구근 분말 첨가가 반죽 물성 및 제빵 가공적성에 미치는 영향)

  • Joung, Yong-Myeon;Lee, Kyung-Seok;Hwang, Seong-Yun;Son, Man-Ja;Lee, Ki-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.287-293
    • /
    • 2010
  • Regarding the physical properties of wheat flour added with lily's root powder, elasticity in farinograms tended to increase as the ratio of added lily's root powder increased. However, viscoelasticity, absorptivity, absorption time, and stability tended to decrease after an initial increase when a certain ratio of lily's root powder was added to the wheat flour. Results from the rapid viscosity analyzer (RVA) indicated that the retention strength, final viscosity, break down, set back value, $P_{max}$ value of the alveogram, and falling number value decreased. As for gaseous release, measured with a rheofermentometer, the total amount of $CO_2$ gas generated and retained tended to decrease. As for the gelatinizing properties in terms of differences in the granularity and the amount of lily's root powder (bulbs) added to wheat flour, the initial gelatinization temperature had no effect regardless of the type or amount of general grinding and minute (ultra-fine, $10\;{\mu}m$) lily's root powder. Meanwhile, the peak viscosity and peak viscosity time exhibited significant differences in 3, 5% general grinding lily's root powder additive groups. On the other hand, there was no significant difference between 3, 5% minute lily's root powder additive groups. This is likely because the activity of the enzyme in wheat flour decreased relatively and differences in the lily's root powder granularity resulted in a variation in water absorptivity. In the preference test, flavor retention of the functional bread increased according to the granularity of lily's root powder and the ratio of added lily's root powder, thus resulting in significant differences in the mouth feel and flavor; the texture and crumb color, however, did not exhibit significant differences.

Performance of a Hollow Fiber Membrane Bioreactor for the Treatment of Gaseous Toluene (중공사막 결합형 생물반응기를 이용한 기체상 톨루엔 제거 특성 검토)

  • Son, Young-Gyu;Kim, Yong-Sik;Khim, Jee-Hyeong;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.886-891
    • /
    • 2005
  • In this study, a novel bioreactor system using a submerged hollow fiber membrane module (so called hollow fiber membrane bioreactor, HFMB) was applied to investigate feasibility and biodegradation capacity of the system for the treatment of gaseous toluene. First an abiotic test was conducted to determine the mass transfer coefficient, showing the value was similar to that obtained from a diffuser system using fine bubbles. Second, in the presence of toluene-degrading microorganisms, the HFMB was operated at different inlet toluene loading rates of 50, 100, $500\;g/m^3/hr$, and overall removal efficiencies were maintained in the range of $70{\sim}80%$. In addition, elimination capacities(EC) were increased up to $800\;g/m^3/hr$, which was substantially higher than maximum ECs for toluene reported in the biofiltration literature. Consequently, the HFMB was considered as an alternative method over other conventional VOC-treating technologies.

Study on Reducing Methods of Natural Food-borne Pathogenic Microorganisms Originated from Saengshik (생식 중 자연환경유래 위해미생물 저감화 방법에 관한 연구)

  • Chang, Tae-Eun;Han, Jeong-Su;Song, Ok-Ja;Chung, Dong-Hwa;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1020-1025
    • /
    • 2004
  • In previous paper, contaminations of food-borne pathogenic bacteria of Saengshik was found to occur during processing, because detection rates of food-borne pathogenic bacteria in final products were higher than those of raw materials. In this study, methods to reduce food-borne pathogenic bacteria and improved manufacturing process were developed for microbial safety of Saengshik. Food-borne pathogenic bacteria in raw materials were reduced to about 0.5-2.0 log cfu/g when seven kinds of raw materials were washed with electrolyzed water and ozonated water, but food-borne pathogenic bacteria could not be removed completely. After improvement of manufacturing process, numbers of food-borne pathogenic bacteria were same or decreased to levels of raw materials. Gaseous ozone and Biocon could control air-borne bacteria under $1{\times}10^1$ cfu/1000 L of air in pulverization and mixing rooms.

Study on the Distributions of VOCs, Aldehydes, PAHs Concentration in Seoul Metropolitan Area (수도권 지역에서 환경대기 중 유해대기오염물질 (VOCs, Aldehydes, PAHs) 농도분포 특성 연구)

  • Han, Jin-Seok;Lee, Min-Do;Lim, Young-Jae;Lee, Sang-Uk;Kim, Young-Mi;Kong, Boo-Joo;An, Jun-Young;Hong, You-Deog
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.574-589
    • /
    • 2006
  • Although concentrations of hazardous air pollutants(HAPs) are very low in the atmosphere, a growing attention has been paid on such compounds due to their high toxicity and bioaccumulation potentials into human body. In order to control and manage the amount of these materials in ambient air, it is necessary to construct monitoring system of them and to know the current concentration level of HAPs above all. In this work, a wide range of HAPs has been measured in metropolitan area to recognize the present state of HAPs in this area. The measured concentration of VOCs was higher in order of Jeonnongdong, Jeongdong, and Yangsuri. The regional difference of VOCs concentration was also highest in spring. Its total VOCs was ranged from $15.17{\sim}41.45$ ppb. Benzene $0.43{\sim}2.32$ ppb showed similar concentration level with the result of previous researches in Seoul. This value is a little higher than the average concentration 0.92 ppb for national ambient air quality standards in Japan. The concentration of aldehydes in this study was lower than those of other researches. Previous works in Seoul metropolitan area showed that the concentration of formaldehyde and acetaldehyde were higher than 5 ppb. The concentration of gaseous and particulate PAHs was high in order of winter, spring, and summer More than 90% of PAHs with low molecular weight such as 2-rings and 3-rings PAHs existed in gas phase. On the other hands, PAHs with high molecular weight more than 5-rings PAHs almost existed in particulate. In spring, the concentration of gaseous PAHs was 24.38 $ng/m^3$ in Jeongdong. Among the particulate PAHs, the concentrations of Naphthalene, Benzo(b)fluoranthene, and Benzo(g, h, i)perylene were higher than others. Especially, the concentration of Benzo(a)pyrene, a important carcinogenic pollutant, was highest in winter 0.5 $ng/m^3$ and ranged from 0.03 to 0.3 $ng/m^3$ in spring and summer, which is lower than the monitoring result in 90's. These components were mainly originated from the vehicle exhaust or heating equipment use.

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • v.60 no.11
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

Strain-Relaxed SiGe Layer on Si Formed by PIII&D Technology

  • Han, Seung Hee;Kim, Kyunghun;Kim, Sung Min;Jang, Jinhyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.155.2-155.2
    • /
    • 2013
  • Strain-relaxed SiGe layer on Si substrate has numerous potential applications for electronic and opto- electronic devices. SiGe layer must have a high degree of strain relaxation and a low dislocation density. Conventionally, strain-relaxed SiGe on Si has been manufactured using compositionally graded buffers, in which very thick SiGe buffers of several micrometers are grown on a Si substrate with Ge composition increasing from the Si substrate to the surface. In this study, a new plasma process, i.e., the combination of PIII&D and HiPIMS, was adopted to implant Ge ions into Si wafer for direct formation of SiGe layer on Si substrate. Due to the high peak power density applied the Ge sputtering target during HiPIMS operation, a large fraction of sputtered Ge atoms is ionized. If the negative high voltage pulse applied to the sample stage in PIII&D system is synchronized with the pulsed Ge plasma, the ion implantation of Ge ions can be successfully accomplished. The PIII&D system for Ge ion implantation on Si (100) substrate was equipped with 3'-magnetron sputtering guns with Ge and Si target, which were operated with a HiPIMS pulsed-DC power supply. The sample stage with Si substrate was pulse-biased using a separate hard-tube pulser. During the implantation operation, HiPIMS pulse and substrate's negative bias pulse were synchronized at the same frequency of 50 Hz. The pulse voltage applied to the Ge sputtering target was -1200 V and the pulse width was 80 usec. While operating the Ge sputtering gun in HiPIMS mode, a pulse bias of -50 kV was applied to the Si substrate. The pulse width was 50 usec with a 30 usec delay time with respect to the HiPIMS pulse. Ge ion implantation process was performed for 30 min. to achieve approximately 20 % of Ge concentration in Si substrate. Right after Ge ion implantation, ~50 nm thick Si capping layer was deposited to prevent oxidation during subsequent RTA process at $1000^{\circ}C$ in N2 environment. The Ge-implanted Si samples were analyzed using Auger electron spectroscopy, High-resolution X-ray diffractometer, Raman spectroscopy, and Transmission electron microscopy to investigate the depth distribution, the degree of strain relaxation, and the crystalline structure, respectively. The analysis results showed that a strain-relaxed SiGe layer of ~100 nm thickness could be effectively formed on Si substrate by direct Ge ion implantation using the newly-developed PIII&D process for non-gaseous elements.

  • PDF

A Review of Pilot Plant Studies on Elemental Mercury Oxidation Using Catalytic DeNOxing Systems in MW-Scale Coal Combustion Flue Gases (MW급 석탄연소 배가스에서 탈질촉매시스템을 이용한 원소수은 산화 실증사례)

  • Kim, Moon Hyeon;Nguyen, Thi Phuong Thao
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.207-216
    • /
    • 2021
  • Major anthropogenic emissions of elemental mercury (Hg0) occur from coal-fired power plants, and the emissions can be controlled successfully using NH3-SCR (selective catalytic reduction) systems with catalysts. Although the catalysts can easily convert the gaseous mercury into Hg2+ species, the reactions are greatly dependent on the flue gas constituents and SCR conditions. Numerous deNOxing catalysts have been proposed for considerable reduction in power plant mercury emissions; however, there are few studies to date of elemental mercury oxidation using SCR processes with MW- and full-scale coal-fired boilers. In these flue gas streams, the chemistry of the mercury oxidation is very complicated. Coal types, deNOxing catalytic systems, and operating conditions are critical in determining the extent of the oxidation. Of these parameters, halogen element levels in coals may become a key vehicle for obtaining better Hg0 oxidation efficiency. Such halogens are Cl, Br, and F and the former one is predominant in coals. The chlorine exists in the form of salts and is transformed to gaseous HCl with a trace amount of Cl2 during the course of coal combustion. The HCl acts as a very powerful promoter for high catalytic Hg0 oxidation; however, this can be strongly dependent on the type of coal because of a wide variation in the chlorine contents of coal.

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

Study on the On-Board Test of After-Treatment Systems to Reduce PM-NOx in Low-Speed Marine Diesel Engine (선박용 저속디젤엔진 적용을 위한 PM-NOx 동시저감 배출저감설비 해상실증 연구)

  • Dong-Kyun Ko;Suk-Young Jeong;In-Seob Kim;Gye-Won An;Youn-Woo Nam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.497-504
    • /
    • 2023
  • In this study, Selective catalytic reduction (SCR) + Diesel particulate filter (DPF) system was installed on a ship with a low-speed engine to conduct the on-board test. The target ship (2,881 gross tons, rated power 1,470 kW@240 rpm ×1) is a general cargo ship sailing in the coastal area. Drawing development, approvals and temporary survey of the ship were performed for the installation of the after-treatment system. For performance evaluation, the gaseous emission analyzer was used according to the NOx technical code and ISO-8178 method of measurement. The particulate matter analyzer used a smoke meter to measure black carbon, as discussed by the International Maritime Organization (IMO). Tests were conducted using MGO (0.043%) and LSFO (0.42%) fuels according to the sulfur content. The test conditions were selected by considering the engine rpm (130, 160 and 180). Gaseous emission and particulate matter (smoke) were measured according to the test conditions to confirm the reduction efficiency of the after treatment system. The results of NOx emission and particulate matter (smoke) revealed that reduction efficiency was more than 90%. The exhaust pressure met the allowable back pressure (less than 50 mbar). This study confirms the importance of the on-board test and the potential of SCR + DPF systems as a response technology for reducing nitrogen oxides and particulate matter.