• Title/Summary/Keyword: Gas-liquid plume

Search Result 19, Processing Time 0.031 seconds

Numerical Analysis of Plume Characteristics and Liquid Circulation in Gas Injection Through a Porous Plug

  • Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.12
    • /
    • pp.1365-1375
    • /
    • 2000
  • Two phase flows have been numerically calculated to analyze plume characteristics and liquid circulation in gas injection through a porous plug. The Eulerian approach has been for formulation of both the continuous and dispersed phases. The turbulence in the liquid phase has been modeled using the standard $textsc{k}$-$\varepsilon$ turbulence model. The interphase friction coefficient has been calculated using correlations available in the literature. The turbulent dispersion of the phase has been modeled by the "dispersion Prand시 number". The predicted mean flows is compared well with the experimental data. The plume region area and the axial velocities are increased with the gas flow rate and with the decrease in the inlet area. The turbulent intensity also shows the same trend. Also, the space-averaged turbulent kinetic energy for various gas flow rates and inlet areas has been obtained. The results are of interest in the design and operation of a wide variety of materials and chemical processing operations.

  • PDF

Spectral Weighted-Sum-of-Gray-Gases Modeling of Narrow Band for Prediction of Radiative Heat Transfer Induced from Liquid Engine Plume (액체 엔진 플룸 복사 열전달 예측을 위한 파장별 회체가스 중합법의 좁은밴드 적용)

  • Ko, Ju-Yong;kim, In-Sun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 2009
  • The precise calculation of gas absorption coefficient in the radiative transfer equation is very important to the prediction of radiative heat transfer induced from liquid engine plume in view of base insulation design. For this purpose, the WNB model for gas absorption coefficient is described with the selection of important parameters and then the calculated results are compared with those of SNB model for validation. Total emissivity, narrow band averaged intensity and total intensity are calculated and compared to the results of SNB model. As results, the total emissivity and the total intensity are well matched within 3.1% and roughly 5 % error, respectively. Moreover, the gas modeling database is constructed with estimation of the combustion gas composition of $CO_2$ and $H_2O$ for liquid engine plume.

  • PDF

Instability analysis of gas injection into liquid (액상으로 분사되는 기체의 불안정성 해석)

  • Kim Hyung-Jun;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.57-60
    • /
    • 2006
  • The instability analysis of submerged gas flow into liquid is studied, which assumes gas and liquid as viscous and irrotational. At low mass flow rate of gas, injected gas plume is collection of bubbles, and increase of gas flow rate makes plume as a jet. It is well known that the transition from bubbling to jetting occurs in the transonic region. But previous works neglect viscous effect of gas flow into liquid. This paper concerns about an application of viscous potential flow theory in cylindrical gas flow into liquid. The growth rate versus wave number and mach number is compared with various condition including inviscid and viscous flow.

  • PDF

A Study on Bubbles Flow in the Gas-injected Cylindrical Bath (기체가 주입된 원통형 용기내에서 기포유동에 관한 연구)

  • Seo Dong-Pyo;Park Keun-Uk;Oh Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.393-396
    • /
    • 2002
  • Submerged gas-injected system can be applied to various industrial field such as metallurgical and chemical processes, So this study aims at presenting the relevant relationship between gas phase and liquid phase in a gas-injected bath. In a cylinderical bath, local gas volume fraction and bubble frequency were measured by electroconductivity probe and oscilloscope. The temperature of each phase was measured using thermocouple and data acquisition system. In vertical gas injection system, gas-liquid two phase plume was formed, being symmetry to the axial direction of injection nozzle and in a shape of con. Lacal gas-liquid flow becomes irregular around the injection nozzle due to kinetic energy of gas and the flow variables show radical change at the vicinity of gas(air) injection nozzle As most of the kinetic energy of gas was transferred to liquid in this region, liquid started to circulate. In this reason, this region was defined as 'developing flow region' The Bubble was taking a form of churn flow at the vicinity of nozzle. Sometimes smaller bubbles formed by the collapse of bubbles were observed. The gas injected into liquid bath lost its kinetic energy and then was governed by the effect of buoyancy. In this region the bubbles which lost their kinetic energy move upward with relatively uniform velocity and separate. Near the gas nozzle, gas concentration was the highest. But it started to decrease as the axial distance increased, showing a Gaussian distribution.

  • PDF

An experimental study on the liquid rocket engine combustion gas cooling (액체로켓 엔진 연소가스 냉각에 관한 실험적 연구)

  • 김현중;유석진;임하영;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.266-269
    • /
    • 2003
  • During liquid rocket engine combustion, the resulting combustion gas has flow characteristics of high temperature and high velocity. An experimental study was performed to obtain basic data for a flame deflector design that is endurable under such flow characteristics. While the injected-water cools down the combustion plume, temperature and pressure of the plume was measured. As the experiment is being performed, gas temperature was measured using infrared cameras, and the gas temperature data was compared with the temperature data from the sensor in the plume. With the results of this experiment, we were able to obtain applicable temperature data for flame deflector design and predict the performance and structural strength required for installation of water injector.

  • PDF

Thermohydraulic Characteristics of Two-Phase Flow in a Submerged Gas Injection System (잠겨진 가스분사장치에서의 2상유동의 열수력학적 특성)

  • Choi, Choeng Ryul;Kim, Chang Nyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.10
    • /
    • pp.1327-1339
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas Injection system. Effects of both the gas flow rate and bubble size were investigated. In addition, heat transfer characteristic and effects of heat transfer were investigated when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for the formulation of both the continuous and the dispersed phases. The turbulence in the liquid phase was modeled by the use of the standard $k-{\varepsilon}$ turbulence model. The interphase friction and heat transfer coefficient were calculated by means of correlations available in the literature. The turbulent dispersion of the phases was modeled by introducing a "dispersion Prandtl number". The plume region and the axial velocities are increased with increases in the gas flow rate and with decreases in the bubble diameter. The turbulent flow field grows stronger with the increases in the gas flow rate and with the decreases in the bubble diameter. In case that the heat transfer between the liquid and the gas is considered, the axial and the radial velocities are decreased in comparison with the case that there is no temperature difference between the liquid and the gas when the temperature of the injected gas is higher than the mean liquid temperature. The results in the present research are of interest in the design and the operation of a wide variety of material and chemical processes.

A Study on the Bubble Flow in the Gas-Liquid Plume (기-액 기둥에서 기포유동에 관한 연구)

  • Seo, Dong-Pyo;Hong, Myung-Seok;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2105-2108
    • /
    • 2003
  • The characteristics of upward bubble flow were experimentally investigated in a liquid bath. In the present study, a thermal-infrared camera and high speed CCO camera were used to measure their temperature and local rising velocity, respectively. Heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. The rising velocity of bubble was calculated for two different experimental conditions: 1) bubble flow without kinetic energy 2) with kinetic energy. Bubble flow without kinetic energy starts to undergo the effect of inertia force 10cm away from the nozzle. Whereas, kinetic energy is dominant before 30 cm away from the nozzle in bubble flow, but after this point, kinetic energy and inertial force are applied on bubble flow at the same time.

  • PDF

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

A Study on the Demonstration of Yellow Plume Elimination System from Combined Cycle Power Plant Using Liquid Injection System (액상 직분사 시스템을 이용한 복합화력 황연제거 실증 연구)

  • Lee, Seung-Jae;Kim, Younghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.317-324
    • /
    • 2020
  • Combined cycle power plants (CCPP) that use natural gas as fuel are easier to start and stop, and have lower pollutant emissions, so their share of domestic power generation facilities is steadily increasing. However, CCPP have a high concentration of nitrogen dioxide (NO2) emission in the initial start-up and low-load operation region, which causes yellow plume and civil complaints. As a control technology, the yellow plume reduction system was developed and operated from the mid-2000s. However, this technology was unable to control the phenomenon due to insufficient preheating of the vaporization system for 10 to 20 minutes of the initial start-up. In this study, CFD analysis and demonstration tests were performed to derive a control technology by injecting a reducing agent directly into the gas turbine exhaust duct. CFD analysis was performed by classifying into 5 cases according to the exhaust gas condition. The RMS values of all cases were less than 15%, showing a good mixing. Based on this, the installation and testing of the demonstration facilities facilitated complete control of the yellow plume phenomenon in the initial start-up.

Study on the Suppression of Sulfur Trioxide in High Sulfur Boiler (고유황 보일러에서의 Sulfur Trioxide의 억제에 대한 연구)

  • Choi, Sung-Bu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.455-463
    • /
    • 2011
  • The average sulfur content of crude oil is 2.2%. Coal is about 0.3 to 4.0 percent of the sulfur gases or particles being discharged into the atmosphere through the chimney as 1 to 2% $SO_3$(Sulfur trioxide) and about 95% of the $SO_2$ is reported. $SO_3$ gas, which has many different causes of, as the combustion of sulfur containing fuel during the air due to the excess $SO_2$ gas is oxidized to $SO_3$ gas. Sulfur trioxide emitted from high sulfur heavy oil fired boiler caused white plume in stack and high temperature and cold end corrosion of facilities. So, in order to control sulfur trioxide concentration of Fuel gas in boiler, various of additives are used in other foreign. They are injected to Fuel Oil and consumed in boiler and reduce ash and the conversion rate of sulfur trioxide. In domestic, MgO compounds are used as additives but the total volume of them are made from other foreign company. In this study, MgO compounds were developed with liquid MgO compounds and field application was accomplished. The effect of newly developed chemicals and process were nearly equal to foreign products. In Consequent, the chemicals and process produced by newly developed technology can be substituted for foreign products and reduce the cost of plant operation.