• Title/Summary/Keyword: Gas-Phase

Search Result 3,253, Processing Time 0.034 seconds

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering (가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성)

  • Lee, Soyul;Choi, Jae-Hyeong;Han, Yoonsoo;Lee, Sung-Min;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.24 no.6
    • /
    • pp.431-436
    • /
    • 2017
  • SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

Numerical Study on the Effect of Gas Diffusion Layer (GDL) Properties in Cathode on the Performance of Polymer Electrolyte Membrane Fuel Cell (PEMFC) (고분자 전해질 연료전지내의 양극 기체확산층 물성 변화가 전지성능에 미치는 영향에 관한 전산해석 연구)

  • Chun, Jeong Hwan;Jo, Dong Hyun;Lee, Ji Young;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.556-561
    • /
    • 2012
  • In this study, the effect of properties of gas diffusion layer (GDL) on the performance of polymer electrolyte membrane fuel cell (PEMFC) was investigated using the numerical simulation. The multi-phase mixture ($M^2$) model was used to calculate liquid water saturation and oxygen concentration in GDL. GDL properties, which were contact angle, porosity, gas permeability and thickness, were changed to investigate the effect of GDL properties on the performance of PEMFC. The results demonstrated that performance of PEMFC was increased with increasing contact angle and porosity of GDL, but decreased with increasing thickness of GDL. The liquid water saturation was decreased but oxygen concentration was increased at the GDL-catalyst layer interface, because the mass transfer resistance decreased as the porosity and contact angle increased. On the other hands, as the thickness of GDL increased, pathway for liquid water and oxygen gas became longer, and then mass transfer resistance increased. For this reason, performance of PEMFC decreased with increasing thickness of GDL.

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.

Gas Hydrate Exploration by using PCS(Pressre Core Sampler): ODP Leg 204 (압력코어를 이용한 가스 하이드레이트 탐사: ODP Leg 204)

  • Lee Young-Joo
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.165-176
    • /
    • 2005
  • Natural gas in deep sediment may occur in three phases based on the physical and chemical conditions. If the concentration of gas in pore water is less than the solubility, gas is dissolved. If the concentration of gas is greater than its solubility (water is saturated or supersaturated with gas), gas occurs as a fee gas below the gas hydrate stability Lone (GHSZ) and is present as solid hydrate within the GHSZ. The knowledge of gas concentration in deep sediment appears critical to determine the phase of natural gases and to understand the formation and distribution of gas hydrate. However, reliable data on gas concentration are usually available only from the upper section of marine sediment by the headspace gas technique, which is widely used for sampling of gases from the sediments. The headspace gas technique represents only a fraction of gases present in situ because sediments release most of the gases during recovery and sampling. The PCS (Pressure Core Sampler) is a downhole tool developed to recover a nominal $1{\cal}m$ long, $4.32{\cal}cm$ diameter core containing $1,465cm^3$ of sediment, pore water and gas at in situ pressure up to 68.9 MPa. During Leg 204, the PCS was deployed at 6 Sites. In situ methane gas concentration and distribution of gas hydrate was measured by using PCS tool. Characteristics of methane concentration and distribution is different from site to site. Distribution of gas hydrate in the study area is closely related to characteristics of in situ gas concentration measured by PCS.

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

Compressible Two-Phase Flow Computations Using One-Dimensional ALE Godunov Method (ALE Godunov 법을 이용한 1 차원 압축성 이상유동 해석)

  • Shin, Sang-Mook;Kim, In-Chul;Kim, Yong-Jig
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.330-340
    • /
    • 2005
  • Compressible two-phase flow is analyzed based on the arbitrary Lagrangian-Eulerian (ALE) formulation. For water, Tamman type stiffened equation of state is used. Numerical fluxes are calculated using the ALE two-phase Godunov scheme which assumes only that the speed of sound and pressure can be provided whenever density and internal energy are given. Effects of the approximations of a material interface speed are Investigated h method Is suggested to assign a rigid body boundary condition effectively To validate the developed code, several well-known problems are calculated and the results are compared with analytic or other numerical solutions including a single material Sod shock tube problem and a gas/water shock tube problem The code is applied to analyze the refraction and transmission of shock waves which are impacting on a water-gas interface from gas or water medium.

Synthesis of Boron-Nitride Film by Plasma Assisted Chemical Vapor Deposition Using $BCl3-NH3-Ar$ Mixed Gas ($BCl3-NH3-Ar$계의 플라즈마화학증착공정을 이용한 질화붕소막의 합성)

  • 박범수;백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.249-256
    • /
    • 1997
  • The effect of process parameter of plasma assisted chemical vapor deposition (PACVD) on the variation of the ratio between cubic boron nitride (c-BN) and hexagonal boron nitride (h-BN) in the film was in-vestigated. The plasma was generated by electric power with the frequency between 100 and 500 KHz. BCl3 and NH3 were used as a boron and nitrogen source respectively and Ar and hydrogen were added as a car-rier gas. Films were composed of h-BN and c-BN and its ratio varied with the magnitude of process parameters, voltage of the electric power, substrate bias voltage, reaction pressure, gas composition, sub-strate temperature. TEM observation showed that h-BN phase was amorphous while crystalline c-BN par-ticle was imbedded in h-BN matrix in the case of c-BN and h-BN mixed film.

  • PDF

Study on Dividing Two-phase Annular flow in a Horizontal Micro T-junction (수평 마이크로 T 자관에서의 2상 환상류 유동분배에 관한 연구)

  • Lee, Jun-Kyoung;Jo, Seong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.16-22
    • /
    • 2011
  • The objective of the present study is to investigate the dividing two-phase flow in a horizontal micro T-junction with the same rectangular cross section, $800\;{\mu}m{\times}800\;{\mu}m$, experimentally. Air and water were used as the test fluids. The superficial velocity ranges of air and water were 15~20 m/s and 0.11~0.2 m/s, respectively. Dividing flow characteristics at the micro T-junction are different from those at the larger T-junctions (5~10 mm in hydraulic diameter). Compared with the results of previous works related with the T-junction with mini cross sections (about 5 mm), for lower range of gas separation, the fraction of the liquid separated through the branch decreases for the fixed fraction of the gas separation. But for higher range of gas separation, higher liquid separation could be found.

Determination of Acrylamide in Foods by Solid Phase Microextraction-Gas Chromatography

  • Chen, Liangbi;Liu, Haizhu;Yu, Ping;Zhao, Jinyun;Chen, Xi
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.895-899
    • /
    • 2009
  • A new approach for the determination of acrylamide (AM) in foods by solid phase microextraction-gas chromatography (SPME-GC) was established. AM was bromized and transformed to 2-bromoacrylamide (2-BAM). 2-BAM was then extracted by a commercial SPME fiber, $75-{\mu}m$ Car/PDMS fiber, for GC detection. The influence of extraction and desorption parameters such as extraction temperature and time, stirring rate, desorption temperature, and time were studied and optimized. The mass concentration was proportional to the peak area of 2-BPA from 1.0 to 8,000 ${\mu}g/L$. The detection limit of the SPME-GC for 2-BAM was found to be 0.1 ${\mu}g/L$, and the recoveries and relative standard deviations for different food samples were 74.5 to 102.0%, and 4.2 to 9.1%, respectively. The presented method was applied to the determination of AM in fried foods.

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.