DOI QR코드

DOI QR Code

Phase Formation and Physical Properties of SiAlON Ceramics Fabricated by Gas-Pressure Reactive Sintering

가스압 반응소결로 제조된 SiAlON 세라믹스의 상형성과 물리적 특성

  • Lee, Soyul (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Jae-Hyeong (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Han, Yoonsoo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Sung-Min (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Seongwon (Engineering Ceramics Center, Korea Institute of Ceramic Engineering & Technology)
  • 이소율 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 최재형 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2017.11.30
  • Accepted : 2017.12.22
  • Published : 2017.12.28

Abstract

SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as $Si_3N_4$, AlN, $Al_2O_3$, and $Yb_2O_3$. In this study, we fabricate $Yb_{m/3}Si_{12-(m+n)}Al_{m+n}O_nN_{16-n}$ (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with ${\beta}$-SiAlON after gas-pressure sintering at $1820^{\circ}C$ for 90 min. under 10 atm $N_2$ pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.

Keywords

References

  1. E. O. Ezugwu, J. Bonney and Y. Yamane: J. Mater. Process. Technol., 134 (2003) 233. https://doi.org/10.1016/S0924-0136(02)01042-7
  2. E. O. Ezugwu: Int. J. Mach. Tool. Manuf., 45 (2005) 1353. https://doi.org/10.1016/j.ijmachtools.2005.02.003
  3. N. C. Acikbas, H. Yurdakul, H. Mandal, F. Kara, S. Turan, A. Kara and B. Bitterlich: J. Eur. Ceram. Soc., 32 (2012) 1321. https://doi.org/10.1016/j.jeurceramsoc.2011.11.030
  4. N. C. Acikbas and O. Demir: Ceram. Inter., 39 (2013) 3249. https://doi.org/10.1016/j.ceramint.2012.10.013
  5. B. Bitterlich, S. Bitsch and K. Friederich: J. Eur. Ceram. Soc., 28 (2008) 989. https://doi.org/10.1016/j.jeurceramsoc.2007.09.003
  6. Y. M. Chiang, D. Birnie III and W. D. Kingery: Physcal Ceramics- Principles for Ceramic Science and Engineering, John Wiley & Sons, (1997) 69.
  7. V. Izhevskiy, L. Genova, J. Bressiani and F. Aldinger: J. Eur. Ceram. Soc., 20 (2000) 2275. https://doi.org/10.1016/S0955-2219(00)00039-X
  8. A. Rosenflanz: Curr. Opin. Solid State Mater. Sci., 4 (1999) 453. https://doi.org/10.1016/S1359-0286(00)00004-8
  9. H. Mandal: J. Eur. Ceram. Soc., 19 (1999) 2349. https://doi.org/10.1016/S0955-2219(99)00111-9
  10. M. Mitomo, R. J. Xie and N. Hirosaki: J. Korean Ceram. Soc., 43 (2006) 451. https://doi.org/10.4191/KCERS.2006.43.8.451
  11. A. Rosenflanz and I. W. Chen: J. Eur. Ceram. Soc., 19 (1999) 2325. https://doi.org/10.1016/S0955-2219(99)00097-7
  12. I. W. Chen and A. Rosenflanz: Nature, 389 (1997) 701. https://doi.org/10.1038/39542