• Title/Summary/Keyword: Gas-Liquid Two-phase Flow

Search Result 212, Processing Time 0.024 seconds

Evaluation of Bubble Size Models for the Prediction of Bubbly Flow with CFD Code (CFD 코드의 기포류 유동 예측을 위한 기포크기모델 평가)

  • Bak, Jin-yeong;Yun, Byong-jo
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.69-75
    • /
    • 2016
  • Bubble size is a key parameter for an accurate prediction of bubble behaviours in the multi-dimensional two-phase flow. In the current STAR CCM+ CFD code, a mechanistic bubble size model $S{\gamma}$ is available for the prediction of bubble size in the flow channel. As another model, Yun model is developed based on DEBORA that is subcooled boiling data in high pressure. In this study, numerical simulation for the gas-liquid two-phase flow was conducted to validate and confirm the performance of $S{\gamma}$ model and Yun model, using the commercial CFD code STAR CCM+ ver. 10.02. For this, local bubble models was evaluated against the air-water data from DEDALE experiments (1995) and Hibiki et al. (2001) in the vertical pipe. All numerical results of $S{\gamma}$ model predicted reasonably the two-phase flow parameters and Yun model is needed to be improved for the prediction of air-water flow under low pressure condition.

Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process (난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과)

  • Lee, Dae-Sung;Kim, Hyo-Geun;Ha, Man-Yeong;Park, Yong-Ho;Park, Ik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Counter-Current Flow Limit of a Vertical Two Phase (Water/Air) Flow (상반류(물/공기) 유동한계에 관한 연구)

  • 오율권;조상진;김상녕;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.308-322
    • /
    • 1991
  • A set of experiments of Counter-Current Flow Limit(CCFL or Flooding) was performed to improve the drawbacks of Wallis' Correlation which neglects the effects of channel size, channel length, injection method and the boundary conditions at the inlet of liquid and gas phase. In these experiments using water and air, the followings were found ; (i) The effects of channel size and length were quite significant. In large tubes(D>20mm), the flooding front occurred at the bottom of the channel and when the gas flow increased the front moved upward ; however, in small tubes(D<20mm), there were no upward movement of flooding front and the flooding just occurred at the liquid inlet. (ii) The effect of water inlet device was not as significant as that of channel length though the inlet boundary conditions could affect the flow development and flooding afterward. (iii) Once the flooding front reached the inlet of water injection device, an newly reduced flow condition was set up and resulted in another flooding corresponding to the new condition.

Experimental Study to reveal Optimum Condition of CO2 Supply Membrane at Photobioreactor (광생물반응기의 CO2 공급 멤브레인의 최적 조건 도출을 위한 실험적 연구)

  • Kim, H.N.;Lee, J.H.;Choi, E.J.;Oh, Y.G.;Kim, Jeongbae
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.130-135
    • /
    • 2014
  • This study was performed to reveal the relationships between various gas supply conditions including inlet numbers and positions for Photobioreactor. To do that, this study was installed the experimental apparatus. All experiments were performed for the cases with 1, 2, 3, and 4 inlets and for gas flow rate of 4~8 lpm. Through the experiments, this study showed that the case with 3 or 4 inlets could reduce about 50% of the pressure loss head for all gas path than that of one inlet base case. So, these results can be used as basic data to design the gross or multiple photobioreactor.

Turbulent Convective Heat Transfer over a Circular Tube Carrying Gas-Liquid Two Phase Flow with Phase Change (상변화를 수반하는 이상류(二相流)가 흐르는 원관 주위에서의 난류 열전달)

  • Yoo S. Y.;Kim Y.;Chung M. K.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.1
    • /
    • pp.74-80
    • /
    • 1987
  • Turbulent convective heat transfer phenomenon which occur around the evaporator section of heat pump were analyzed experimentally. For this purpose a special wind tunnel and a heat pump system were designed and fabricated. Evaporator section was installed perpendicular to air flow direction and part of the evaporator was made of a glass tube for visual observation. The velocity distribution, turbulent intensity and temperature distribution were measured by hot wire technique and thermocouples. An experimental correlation for the convective heat transfer coefficient was obtained and the result is somewhat higher than the value calculated from Hilpert equation. The difference in two equations is believed to be due to the boning effect inside the evaporator tube.

  • PDF

A Theoretical Analysis of the Weak Shock Waves Propagating through a Bubbly Flow (기액 이상류를 전파하는 약한 충격파에 관한 이론해석적 연구)

  • Jun, Gu-Sik;Baek, Seung-Cheol;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1617-1622
    • /
    • 2004
  • Two-phase flow of liquid and gas through pipe lines are frequently encountered in nuclear power plant or industrial facility. Pressure waves which can be generated by a valve operation or any other cause in pipe lines propagate through the two-phase flow, often leading to severe noise and vibration problems or fatigue failure of pipe line system. It is of practical importance to predict the propagation characteristics of the pressure waves for the safety design for the pipe line. In the present study, a theoretical analysis is performed to understand the propagation characteristics of a weak shock wave in a bubbly flow. A wave equation is developed using a small perturbation method to analyze the weak shock wave through a bubbly flow with comparably low void fractions. It is known that the elasticity of pipe and void fraction significantly affect the propagation speed of shock wave, but the frequency of relaxation oscillation which is generated behind the shock wave is not strongly influenced by the elasticity of pipe. The present analytical results are in close agreement with existing experimental data.

  • PDF

Velocity and Spray Characteristics under Swirl Flows in a Model Combustor (모델연소기 선회유동장에서의 속도 및 분무특성)

  • Bae, C.S.;Lee, D.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.42-50
    • /
    • 1998
  • The effect of swirl flows un the fuel spray characteristics were investigated for various swillers in a model combustor. The interaction between the flow field and fuel spray in the main combustion tone made by frontal devices including fuel injection nozzles and swirlers. which were characterized by flow velocities, fuel droplet sizes and their distributions which were measured by APV(Adaptive Phase/Doppler Velocimetry) under atmospheric condition at 320cc/min kerosine fuel flow and 0.04kg/sec air supply. A dual swirler with circumferential two-stage swirl vanes of $40^{\circ}\;and\;45^{\circ}$ vanes in different directions and two single-stage swillers of $40^{\circ}$ vanes with 12 and 16 vanes were tested. It was found that the dual swirler has the largest recirculating zone with highest reverse flow velocity. The strongest swirl flow was found at the boundary of recirculation zone. Small fuel droplets were observed in the main axial stream and inside the recirculation zone when swirling flow field were generated by the frontal devices. These findings could give the tips on the optimal design of frontal devices to realize low emissions in gas turbine combustion.

  • PDF

Experimental research on flow regime and transitional criterion of slug to churn-turbulent and churn-turbulent to annular flow in rectangular channels

  • Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3973-3982
    • /
    • 2023
  • As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.

Numerical study of oxygen transport characteristics in lead-bismuth eutectic for gas-phase oxygen control

  • Wang, Chenglong;Zhang, Yan;Zhang, Dalin;Lan, Zhike;Tian, Wenxi;Su, Guanghui;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2221-2228
    • /
    • 2021
  • One-dimensional oxygen transport relation is indispensable to study the oxygen distribution in the LBE-cooled system with an oxygen control device. In this paper, a numerical research is carried out to study the oxygen transport characteristics in a gas-phase oxygen control device, including the static case and dynamic case. The model of static oxygen control is based on the two-phase VOF model and the results agree well with the theoretical expectation. The model of dynamic oxygen control is simplified and the gas-liquid interface is treated as a free surface boundary with a constant oxygen concentration. The influences of the inlet and interface oxygen concentration, mass flow rate, temperature, and the inlet pipe location on the mass transfer characteristics are discussed. Based on the results, an oxygen mass transport relation considering the temperature dependence and velocity dependence separately is obtained. The relation can be used in a one-dimensional system analysis code to predict the oxygen provided by the oxygen control device, which is an important part of the integral oxygen mass transfer models.

EFFECTS OF GRID SPACER WITH MIXING VANE ON ENTRAINMENTS AND DEPOSITIONS IN TWO-PHASE ANNULAR FLOWS

  • KAWAHARA, AKIMARO;SADATOMI, MICHIO;IMAMURA, SHOGO;SHIMOHARAI, YUTA;HIRAKATA, YUDAI;ENDO, MASATO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.389-397
    • /
    • 2015
  • The effects of mixing vanes (MVs) attached to a grid spacer on the characteristics of air-water annular flows were experimentally investigated. To know the effects, a grid spacer with or without MV was inserted in a vertical circular pipe of 16-mm internal diameter. For three cases (i.e., no spacer, spacer without MV, and spacer with MV), the liquid film thickness, liquid entrainment fraction, and deposition rate were measured by the constant current method, single liquid film extraction method, and double liquid film extraction method, respectively. The MVs significantly promote the re-deposition of liquid droplets in the gas core flow into the liquid film on the channel walls. The deposition mass transfer coefficient is three times higher for the spacer with MV than for the spacer without MV, even for cases 0.3-m downstream from the spacer. The liquid film thickness becomes thicker upstream and downstream for the spacer with MV, compared with the thickness for the spacer without MV and for the case with no spacer.