DOI QR코드

DOI QR Code

Evaluation of Bubble Size Models for the Prediction of Bubbly Flow with CFD Code

CFD 코드의 기포류 유동 예측을 위한 기포크기모델 평가

  • Bak, Jin-yeong (School of Mechanical Engineering, Pusan National University) ;
  • Yun, Byong-jo (School of Mechanical Engineering, Pusan National University)
  • 박진영 (부산대학교 기계공학부 원자력시스템 전공) ;
  • 윤병조 (부산대학교 기계공학부 원자력시스템 전공)
  • Received : 2015.12.01
  • Accepted : 2016.01.29
  • Published : 2016.03.31

Abstract

Bubble size is a key parameter for an accurate prediction of bubble behaviours in the multi-dimensional two-phase flow. In the current STAR CCM+ CFD code, a mechanistic bubble size model $S{\gamma}$ is available for the prediction of bubble size in the flow channel. As another model, Yun model is developed based on DEBORA that is subcooled boiling data in high pressure. In this study, numerical simulation for the gas-liquid two-phase flow was conducted to validate and confirm the performance of $S{\gamma}$ model and Yun model, using the commercial CFD code STAR CCM+ ver. 10.02. For this, local bubble models was evaluated against the air-water data from DEDALE experiments (1995) and Hibiki et al. (2001) in the vertical pipe. All numerical results of $S{\gamma}$ model predicted reasonably the two-phase flow parameters and Yun model is needed to be improved for the prediction of air-water flow under low pressure condition.

기포크기는 다차원 이상유동에서 정확한 기포거동의 예측을 위해 중요한 인자이다. 현재 CFD 코드인 STAR CCM+에서는 유동채널에서 기포크기예측을 위해 역학적인 기포크기모델인 $S{\gamma}$ 모델을 제공하고 있다. 기포크기 예측을 위한 또 다른 모델로써 고압조건의 과냉 비등 실험인 DEBORA 실험을 바탕으로 개발된 Yun 모델이 있다. 본 연구에서는 상용 CFD 코드인 STAR CCM+ ver. 10.02를 이용하여 물-공기 이상유동에 대한 수치해석을 통해 $S{\gamma}$ 모델과 Yun 모델의 성능을 확인하고 평가하였다. 이를 위해 두 모델은 수직관에서의 물-공기 실험인 DEDALE 실험과 Hibiki 등의 실험에 대하여 평가되었다. 해석 결과 $S{\gamma}$ 모델은 이상유동 인자들을 합리적으로 예측하였으며, Yun 모델은 저압조건의 물-공기 유동에는 적합하지 않음을 확인하였다.

Keywords

References

  1. Yao W. and Morel C., Volumetric interfacial area prediction in upward bubbly two-phase flow, Int. J. Heat Mass Transf., 47(2), 307-328, 2004, https://doi.org/10.1016/j.ijheatmasstransfer.2003.06.004
  2. Yeoh G. H. and Tu J. Y., A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow, Nuclear Engineering and Design,235(10), 1251-1265, 2005 https://doi.org/10.1016/j.nucengdes.2005.02.015
  3. Lo S. and Zhang D.H., Modelling of break-up and coalescence in bubbly two-phase flows, The Journal of Computational Multiphase Flows, 1(1), 23-28, 2009 https://doi.org/10.1260/175748209787387106
  4. Yun B. J., Development of advanced analysis technology for the core-catcher component against severe accident, Final Report (2012M5A4A1047940), Pusan national univ., 2013
  5. Hibiki T., Ishii M. and Xiao Z., Axial interfacial area transport of vertical bubbly flows, Int. J. Heat Mass Transf., 44(10), 1869-1888, 2001 https://doi.org/10.1016/S0017-9310(00)00232-5
  6. Yun, B. J., Splawski, A., Lo, S. and Song, C. H., Prediction of a subcooled boiling flow with advanced two-phase flow models, Nuclear engineering and design, 253, 351-359, 2012 https://doi.org/10.1016/j.nucengdes.2011.08.067
  7. Troshko A. A. and Hassan Y. A., A two-equation turbulence model of turbulent bubbly flows, International Journal of Multiphase Flow, 27(11), 1965-2000, 2001 https://doi.org/10.1016/S0301-9322(01)00043-X
  8. Antal S.P. and Lahey Jr. R.T., Flaherty J.E., Analysis of phase distribution in fully developed laminar bubbly two-phase flow, International Journal of Multiphase Flow, 17(5), 635-652, 1991 https://doi.org/10.1016/0301-9322(91)90029-3
  9. Bozzano G. and Dente M., Shape and terminal velocity of single bubble motion: a novel approach, Computer and Chemical Engineering, 25(4), 571-576, 2001 https://doi.org/10.1016/S0098-1354(01)00636-6