• Title/Summary/Keyword: Gas porosity

Search Result 306, Processing Time 0.028 seconds

Effects of Welding Parameters on Porosity Formation in Weld Beads of Galvanized Steel Pipes produced with Gas Metal Arc Welding (아연도금강관의 가스메탈아크용접에서 용접인자가 기공형성에 미치는 영향)

  • Lim, Young-Min;Jang, Bok-Su;Koh, Jin-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.46-50
    • /
    • 2012
  • This study was carried out to investigate the effect of welding parameters such as shielding gas compositions welding voltage and welding current on the pore formation in the weld beads of galvanized steel pipes produced with gas metal arc welding. The porosity was evaluated and rated by metallography and radiographic test in terms of weight percentage, number and distribution of pores in weld beads. The porosity increased with increasing welding voltage and current, in which Ar gas produced the most porosity while $Ar+5%O_2$ generated the least porosity. It was found that the porosity could be reduced by selection of the proper gas mixture composition such as $Ar+5%O_2$ and $Ar+10%CO_2$ and by using current (130~150A) and voltage(16~20V).

Simulation of Pore Interlinkage in the Rim Region of High Burnup $UO_2$Fuel

  • Koo, Yang-Hyun;Oh, Je-Yong;Lee, Byung-Ho;Cheon, Jin-Sik;Joo, Hyung-Koo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • Threshold porosity above which fission gas release channels would be formed in the rim egion of high burnup UO$_2$ fuel was estimated by the Monte Carlo method and Hoshen-Kopelman algorithm. With the assumption that both rim pore and rim grain can be represented by cube, pore distribution in the rim was simulated 3-dimensionally by the Monte Carlo method according to porosity and pore size distribution. Then, using the Hoshen-Kopelman algorithm, the fraction of open rim pores interlinked to the outer surface of a fuel pellet was derived as a function of rim porosity. The simulation showed that porosity of 24-25% is the threshold above which the number of rim pores forming release channels increases very rapidly. On the other hand, channels would not be formed if the porosity is less than about 23.5%. This is consistent with the observation that, for porosity less than 23.5%, almost no fission gas is released in the rim. However, once the rim porosity reaches beyond 25%, extensive open paths would be developed and considerable fission gas release would start in the rim.

Study for Permanent Mold Design Technology and Porosity Defect Prediction Method by Multi-Phase Flow Numerical Simulations (다상유체해석을 통한 기포결함 예측과 금형설계기술)

  • Choi Y. S.;Cho I. S.;Hwang H. Y.;Choi J. K.;Hong J. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.224-232
    • /
    • 2005
  • The high-pressure die-casting is one of the most effective methods to produce a large amount of products in short cycle time. This process, however, has a problem that the gas porosity defect appears easily. The generation of gas porosity is known mainly due to the air entrapment during the injection stage. Most of numerical simulations for the molten metal flow pattern observations have done in the treating of one phase fluid flow but the gas-liquid interface is essentially multi- phase phenomenon. In this paper, the two-phase fluid flow numerical simulation methods have been adapted to predict the gas porosity generations in the molten metal. The accuracy and the usefulness of the new simulation module have been emphasized and verified through some comparison experiments.

Weldability in Nd:YAG Laser of Sintered Material Depend on Shielding Gases (보호가스에 따른 소결체의 Nd:YAG 레이저 용접성)

  • Kim, Yong;Yang, Hyun-Seok;Park, Ki-Young;Lee, Kyoung-Don
    • Laser Solutions
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2007
  • This study includes the effects of shielding gas types and flow rate on Nd:YAG Laser weldability of sintered material. The types of shielding gas were evaluated for He, Ar and N2. Bending strength, porosity rate, hardness and aspect ratio testing of laser weld are carried out to evaluated the weldability. As a results, Ar gas was showed the best welding strength even it has the most porosity content on weld metal, and depend on increases the gas flow rate, it was not only got deeper penetration depth but also showed higher bending strength. Therefore we could know that bending strength is not only affect the porosity content but also melting area.

  • PDF

The Effect of Shielding Gas on Forming Characteristics for Direct Laser Melting (Direct Laser Melting 공정시 차폐가스가 성형 특성에 미치는 영향)

  • Han, S.W.;Shin, S.G.R.;Joo, B.D.;Lee, C.H.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.6
    • /
    • pp.334-339
    • /
    • 2013
  • Direct Laser Melting is a prototyping process whereby a 3-D part is built layer wise by melting the metal powder with laser scanning. This process is strongly influenced by the shielding gas and the laser operating parameters such as laser power, scan rate, layering thickness, and rescanning. The shielding gas is especially important in affecting the microstructure and mechanical properties. In the current study, fabrication experiments were conducted in order to analyze the effect of shielding gas on the forming characteristics of direct laser melting. Cylindrical parts were produced from a Fe-Ni-Cr powder with a 200W fiber laser. Surface quality, porosity and hardness as a function of the layering thickness and shield gas were evaluated. By decreasing the layering thickness, the surface quality improved and porosity decreased. The selection of which shield gas, Ar or $N_2$, to obtain better surface quality, lower porosity, and higher hardness was examined. The formability and mechanical properties with a $N_2$ atmosphere are better than those parts formed under an Ar atmosphere.

Variation of Porosity and Gas Permeability of Gas Diffusion Layers Under Compression (가스확산층의 압축에 따른 공극률 및 기체투과율의 변화)

  • Lee, Yongtaek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.767-773
    • /
    • 2013
  • This study suggested the variations of porosity and gas permeability of gas diffusion layers (GDLs), which are easily deformed among the components of a highly compressed PEMFC stack. The volume change owing to compression was measured experimentally, and the variations in the porosity and gas permeability were estimated using correlations published in previous literature. The effect of polytetrafluoroethylene (PTFE) which is added to the GDLs to enhance water discharge was investigated on the variations of porosity and gas permeability. The gas permeability which strongly affects the mass transport through GDL, decreases sharply with increasing compression when the GDL has high PTFE loading. As a result, the mass transport through the pore network of GDL can be changed considerably according to the PTFE loading even with the same clamping force. The accuracy of modeling of transport phenomena through GDL can be improved due to the enhanced correlations developed based on the results of this study.

Preparation of Spherical Granules of Dolomite Kiln Dust as Gas Adsorbent

  • Choi, Young-Hoon;Huh, Jae-Hoon;Lee, Shin-Haeng;Han, Choon;Ahn, Ji-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.13-17
    • /
    • 2016
  • It is highlighted that increasing the adsorbent surface area on volumetric basis is very important in providing an easy access for gas molecules. Fine particles around $3{\mu}m$ of soft-burned dolomite kiln dust (SB-DKD) were hydrated to wet slurry samples by ball mill process and then placed in a chamber to use spray dryer method. Spherical granules with particle size distribution of $50{\sim}60{\mu}m$ were prepared under the experimental condition with or without addition of a pore-forming agent. The relationship between bead size of the pore-forming agent and size of SB-DKD particles is the most significant factor in preparation of spherical granules with a high porosity. Whereas addition of smaller beads than SB-DKD resulted in almost no change in the surface porosity of spherical granules, addition of larger beads than SB-DKD contributed to obtaining of the particles with both 15 times larger average pore volume and 1 order of magnitude larger porosity. It is considered that spherical granules with improved $N_2$ gas adsorption ability may also be utilized for other atmospheric gas adsorption.

A study on the pure Al weldability using a pulsed Nd : YAG laser (펄스형 Nd:YAG 레이저를 이용한 Al의 용접 특성연구)

  • 김덕현
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.52-61
    • /
    • 1993
  • Laser welding of ASTM no. 1060 Al plate with a pulsed Nd: YAG laser of 200W average power was performed for end capping of KMRR nuclear fuel elements In this research, we performed basic welding experiments. Firstly, laser output parameters which affect laser welding parameters were studied by changing laser input parameters for effective welding of 1060 Al plates. We found that laser power density and pulse energy are important parameters for smooth bead shape. Secondly, welding parameters which affect weld width-to-depth ratio were studied by changing power density and pulse energy, shielding gas, and defocusing. We found that power density must be higher than 0.3 Mw/cm$^{2}$ pulse energy must be higer than 3 J. travel speed must not exceed 200mm/sec, laser focus must be existed beneath 2-3mm from plate surface and helium is proper shielding gas. Thirdly, we studied the weld defects of Al-1060 such as crack and porosity in lap-joint welding. We designed new welding geometry for crack free welding of Al-1060 plates, and obtained crack free weldment but with lack of fusion. However, with Ti, Zr grain refiner elements, we can weld Al plates without solidification hot crack. Finally, we studied the origin of porosity by changing shielding gas. And we found that porosity was resulted from entrapment of shielding gas by the collapsing keyhole.

  • PDF

Numerical Study on the Effects of GDL Porosity on the PEMFC Performance (기체확산층의 기공률이 고분자 전해질 연료전지 성능에 미치는 영향에 관한 전산해석 연구)

  • Kim, Kyoung-Youn;Sohn, Young-Jun;Kim, Min-Jin;Lee, Won-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1022-1030
    • /
    • 2009
  • Numerical analysis was carried out to investigate the effect of GDL (Gas diffusion layer) porosity on the performance of PEMFC (proton exchange membrane fuel cell). A complete three-dimensional model was chosen for single straight channel geometry including cooling channel. Main emphasis is placed on the heat and mass transfer through the GDL with different porosity. The present numerical results show that at high current densities, the cell voltage is influenced by the GDL porosity while the cell performance is nearly the same at low current densities. At high current densities, low value of GDL porosity results in decrease of the fuel cell performance since the diffusion of reactant gas through GDL becomes slow with decreasing porosity. On the other hand, for high GDL porosity, the effective thermal conductivity becomes low and the heat generated in the cell is not removed rapidly. This causes the temperature of fuel cell to increase and gives rise to dehydration of the membrane, and ultimately increase of the ohmic loss.

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.