• Title/Summary/Keyword: Gas poisoning

Search Result 111, Processing Time 0.023 seconds

Analysis of Mechanism for Diffusion of Incomplete Combustion Gas Released from Domestic Gas Boiler (가정용 보일러의 불완전연소가스 누출확산 메커니즘 해석)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Yoon, Joon-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2868-2873
    • /
    • 2008
  • Carbon Monoxide(CO) poisoning accident is higher than any other gas accident in the rate of deaths/incidents. In the last five years, 36 people died and 104 were wounded because of carbon monoxide poisoning accident. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread of incomplete combustion gas(CO) released from leakage hole of exhaust tube was analyzed by computational flow modeling and concentration measuring test. CO gas leaked form exhaust tube in a building was highest concentrated near the ceiling and formed the circular currents along the walls. Through these experiments and simulation, the reasonable installation location of carbon monoxide alarm was made certain and suggested.

  • PDF

EXPERIMENTAL AND COMPUTATIONAL PREDICTION OF CONCENTRATION OF CARBON MONOXIDE GAS RELEASED FROM EXHAUST TUBE OF GAS BOILER (가스보일러 배기통 이탈에 의한 CO가스 누출확산 실험 및 수치해석)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Yoon, Joon-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.172-175
    • /
    • 2008
  • In the last five years, 45 people died and 104 were wounded because of carbon monoxide poisoning accident. CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread of CO gas released from leakage hole of exhaust tube was analyzed by computational flow modeling and concentration measuring test. CO gas leaked form exhaust tube in a building was highest concentrated near the ceiling and formed the circular currents along the walls. Through these experiments and simulation, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

A Study on Installation of Carbon Monoxide Detector in a Building (건축물내 일산화탄소 경보기 설치에 관한 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Oh, Jeong-Seok
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.217-222
    • /
    • 2008
  • In the last five years, 45 people died and 104 were wounded because of carbon monoxide poisoning accident. CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread of CO gas released from leakage hole of exhaust tube was analyzed by concentration measuring test. CO gas leaked form exhaust tube in a building was highest concentrated near the ceiling. Through these experiments, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

The performance of PEMFC after hydrogen sulfide poisoning under various operating conditions (황화수소 피독이 고분자전해질 막 연료전지의 성능에 미치는 영향)

  • Lee, Soo;Jin, Seok-Hwan;Kim, Sang-Myoung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrades when hydrogen sulfide ($H_2S$) is present in the fuel hydrogen gas; this is referred to as $H_2S$ poisoning. This paper reveals $H_2S$ poisoning on PEMFC by measuring electrical performance of single cell FC under various operating conditions. The severity of $H_2S$ poisoning depended on $H_2S$ concentration under best operating conditions($65^{\circ}C$ of cell temperature and 100% of anode humidification). $H_2S$ adsorption occured on the surface of catalyst layer on MEA, but not on the gas diffusion layer(GDL) by analyzing SEM/EDX data. In addition, MEA poisoning by $H_2S$ was cumulative but reversible. After poisoning for less than 150 min, performance of PEMFC was recovered up to 80% by just inert nitrogen gas purging.

A Method to Prevent CO Poisoning from Instantaneous Water Heaters (순간 가스온수기의 CO 중독사고 예방에 관한 연구)

  • Ahan, Jeong-Jin;Yeo, Chang-Hoon;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.26-30
    • /
    • 2011
  • Instantaneous water heater being not properly installed and not adequately maintained may produce fatal accidents due to carbon monoxide poisoning and suffocation. Insufficient supply of air into the gas appliance for complete burning of the fuel or blocking the outlet of the combustion gas could be a cause to increase carbon monoxide concentration in the exhaust gas of the gas appliance. In this work, the experiments are done with a collected instantaneous water heater using in domestic and the concentration of oxygen near the gas appliance and carbon monoxide in exhaust gas are observed to investigate the risk of instantaneous water heater. The concentration of oxygen near the gas appliance is reduced until 17.7% for the ratio of the ventilation area and floor area being 3.5%. If the outlet of combustion gas is blocked, the carbon monoxide concentration is steeply increasing more than 4,000ppm. Therefore, periodic checking the outlet of combustion gas is more important than vent area to reduce the risk of carbon monoxide poisoning.

A Study on the Standard for Installation of Carbon Monoxide Detector in a Building (건축물내 일산화탄소 경보기 설치기준에 관한 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the last five years, 36 people died and 79 were wounded because of carbon monoxide poisoning accident. A CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread mechanism of CO gas released from leakage hole of exhaust tube was analyzed by concentration measuring test. A CO gas leaked form exhaust tube in a building was the highest concentrated near the ceiling. CO alarm sets installation test confirmed that the alarm sets near the ceiling operated first, and the bottom and middle sets operated after $30{\sim}40$ minutes. Through these experiments, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

A Study on Hydrogen Impurity Effect in Anode of Proton Exchange Membrane Fuel Cell on Various Concentration of CO and H2S (고분자전해질 연료전지 연료극의 일산화탄소 및 황화수소 농도에 따른 불순물영향에 관한 연구)

  • LEE, EUN-KYUNG;BAEK, JAE-HOON;LEE, JUNG-WOON;LEE, SEUNG-KUK;LEE, YEON-JAE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.670-676
    • /
    • 2016
  • Hydrogen town in Republic of Korea was established in 2013. Hydrogen as a byproduct produced by various processes of factories is used in hydrogen town facilities. As cell performance is affected by contaminations in fuel gas, various standards about impurities of fuel have been determined by many countries. This study shows performance degradation of single cell with impurities concentrations. Traces of carbon monoxide (CO) and hydrogen sulfide ($H_2S$)can cause considerable cell performance losses. For comparing the performances by poisoning of CO, acceleration test, I-V curve, constant current are performed. Both the CO and $H_2S$ poisoning rate are a function of their concentration. With the higher concentrations the higher poisoning rates are observed. And, it was confirmed that, oxidation behavior and side reaction generation are not affected. Under the lower $H_2S$ concentration condition, the poisoning rate is much higher than that of CO because of its different adsorption intensity. It can be possible that the result of this study can be used for enacting regulation as a baseline data.

Effect on blood heavy metal concentration in gas poisoning by combustion of ignition coal: Pilot study (착화탄 연소에 의한 가스 중독 환자에서 혈중 중금속 농도의 영향에 대한 예비연구)

  • Lee, Sang Hwan;Lee, Juncheol;Cho, Yongil;Ko, Byuk Sung;Oh, Jaehoon;Kang, Hyunggoo
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.19 no.2
    • /
    • pp.127-132
    • /
    • 2021
  • Purpose: It is known that the most common cause of gas poisoning in Korea is suicide attempts by burning ignition coals. Ignition coals are made from waste wood, and studies have been reported that heavy metals are emitted when this coal is burned. However, there was no study on how much heavy metal poisoning occurs in the human body through this, so this study was planned to find out whether the concentration of heavy metals in the blood increased in patients exposed to ignition coal combustion. Methods: From April 2020 to April 2021, blood lead, mercury, and cadmium concentrations were investigated in carbon monoxide poisoning patients who visited one regional emergency medical center in Seoul, and their association with exposure time, source of poisoning, and rhabdomyolysis were investigated. Results: During the study period, a total of 136 carbon monoxide poisoning patients were tested for heavy metals, and 81 cases of poisoning by ignition coal were reported. When comparing poisoning caused by combustion of ignition coal and other substances, there was no difference in the concentrations of lead, mercury, and cadmium in the blood, and there was no difference in the number of patients above the reference range. However, the patients exposed to more than 5 hours of ignition coal gas exposure are more frequent than those in the group less than 5 hours in lead (51.4% vs. 23.9%, p=0.012). Conclusion: Compared to poisoning with other combustible substances, the blood concentration of lead, mercury, and cadmium does not increase further in patients with gas poisoning by ignition coal. However, prolonged exposure may result in elevated levels of lead.

Elimination of CO through the Lung in CO Poisoned Dog (일산화탄소중독시(一酸化炭素中毒時) 폐(肺)로 부터의 일산화탄소(一酸化炭素) 방산(放散)에 관(關)하여)

  • Kang, Bann;Kim, Kun-Joo;Ryo, Ung-Yun
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.185-191
    • /
    • 1967
  • In order to evaluate the elimination of CO through the lung comparing with the decrease of CO content in the blood, authors had induced acute CO poisoning on 9 dogs. Arterial CO-Hb saturation, CO concentration, %, in expired gas and eliminated CO amount through the lung were measured at 1,5,10,30,60, and 120 minutes after acute CO poisoning in 6 dogs breathing room air and 3 dogs breathing room air and oxygen alternately. Results obtained are summarized as follows. In room air breathing group, arterial CO-Hb saturation averaged 50.8% , and 53.67 ml of CO was blew off through the lung during 120 minutes and in alternately air and oBygen breathing group, the arterial CO-Hb saturation averaged 65.6% and 95.6 ml of CO was blew off through the lung. The amount of CO eliminated in expired gas for 120 minute was much less than the amount of decreased CO in arterial blood which was calculated with the decreased CO-Hb content in the estimated circulating blood volume. Such difference between the amount of eliminated CO in expired gas and the decreased CO in blood might be attributed to the oxidation of CO to $CO_2$ in the tissues. Concentration of CO in expired gas was markedly increased and the rate of decrease in arterial CO-Hb saturation is enhanced by oxygen breathing. In early period of recovery from acute CO poisoning, neither the CO concentration in expired gas, nor, the rate of CO elimination (unlit 2 minutes after CO poisoning) showed close correlation with the blood CO-Hb saturation level. The reason seemed to be due to irregularly depressed or unevenly stimulated respiration which were induced by acute CO poisoning.

  • PDF

Single Cell Performance Recovery of $SO_2$ Poisioned PEMFC using Cyclic Voltametry (순환전류 전압법을 이용한 이산화황 피독 PEMFC 단위전지의 성능 회복)

  • Lee, Soo;Jin, Seok-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.497-501
    • /
    • 2011
  • Polymer electrolyte membrane fuel cell (PEMFC) performance degrade when sulfur dioxide is present in the fuel hydrogen gas, this is referred as $SO_2$ poisoning. This paper reveals $SO_2$ poisoning on PEMFC cathode part by measuring electrical performance of single cell under 1 ppm and 5 ppm on $SO_2$ gas operating. The security of $SO_2$ poisoning depended on $SO_2$ concentration under the best operating conditions($65^{\circ}C$ of cell temperature and 100% of relative humidity between anode and cathode). $SO_2$ adsorption occured on the surface of catalyst layer on membrane electrode assembly (MEA), In addition, MEA poisoning by $SO_2$ was cumulative but reversible. After poisoning within 5 ppm $SO_2$ for 1hr, the electrical performance of PEMFC was found to recover up to about 93% by cyclic voltametry scan.