• Title/Summary/Keyword: Gas phase oxidation

Search Result 162, Processing Time 0.025 seconds

Simultaneous Oxidation of NO, CO, and CH4 over Mn-Cu/Al2O3 Catalyst (Mn-Cu/Al2O3 촉매 상에서 NO, CO 및 CH4 동시 산화)

  • Ji Eun Jeong;Chang-Yong Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Mn-M/Al2O3 (M = Cu, Fe, Co, and Ce) catalysts were prepared for simultaneous oxidation of NO, CO, and CH4, and their oxidation activities were compared. The Mn-Cu/ Al2O3 catalyst with the best simultaneous oxidation activity was characterized by XRD, Raman, XPS, and O2-TPD analysis. The result of XRD indicated that Mn and Cu existed as complex oxides in the Mn-Cu/Al2O3 catalyst. Raman and XPS results showed that electron transfer between Mn ions and Cu ions occurred during the formation of the Mn-O-Cu bond in the Mn-Cu/Al2O3 catalyst. The XPS O 1s and O2-TPD analyses showed that the Mn-Cu/Al2O3 catalyst has more adsorbed oxygen species with high mobility than the Mn/Al2O3 catalyst. The high simultaneous oxidation activity of the Mn-Cu/Al2O3 catalyst is attributed to these results. Gas-phase NO promotes the oxidation reactions of CO and CH4 in the Mn-Cu/Al2O3 catalyst while suppressing the NO oxidation reaction. These results were presumed to be because the oxidized NO was used as an oxidizing agent for CO and CH4. On the other hand, the oxidation reactions of CO and CH4 competed on the Mn-Cu/Al2O3 catalyst, but the effect was not noticeable because the catalyst activation temperature was different.

A Study on the Degradation of PAH in Organic and Aqueous Phases by Ozone (다환방향족탄화수소에 대한 오존처리의 방법에 관한 연구)

  • Choi, Young Ik;Son, Hee-Jong;Jung, Chul-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1123-1129
    • /
    • 2006
  • Pyrene of natural and anthropogenic sources is one of the toxic, mutagenic polycyclic aromatic hydrocarbons (PAHs) listed as priority pollutants. The objectives of this research are to break down pyrene by using ozonation, identify the intermediates and byproducts of pyrene, and test the biodegradability of intermediates and byproducts of pyrene in the aqueous phase. Since pyrene is non-polar, hexane was chosen as a solvent to effectively dissolve pyrene. Pyrene solutions were treated with ozone, as it has high oxidation capacity and electrophilic characteristic. After different ozonation pretreatment times (2, 3, and 10 minutes), intermediates of pyrene in the form of yellowish solid were collected from the hexane solution using a centrifuge. They were identified by gas chromatography/mass spectrometer (GC/MS). $BOD_5$, COD, and E-coli toxicity tests have been performed to assess the ozonation products.

Development of Analysis Condition and Detection of Volatile Compounds from Cooked Hanwoo Beef by SPME-GC/MS Analysis

  • Ba, Hoa Van;Oliveros, Maria Cynthia;Ryu, Kyeong-Seon;Hwang, In-Ho
    • Food Science of Animal Resources
    • /
    • v.30 no.1
    • /
    • pp.73-86
    • /
    • 2010
  • The current study was designed to optimize solid phase microextraction (SPME)-GC-MS conditions for extraction and analysis of volatile components for Hanwoo beef and to establish a tentative database of flavor components. Samples were taken from Hanwoo longissimus muscle (30 mon old steer, $1^+B$ carcass grade) at 24 h postmortem. Results indicated that the optimum adsorption time for $75{\mu}m$ CAR/PDMS fiber was 60 min at $60^{\circ}C$. Thermal cleaning at $250^{\circ}C$ for 60 min was the best practice for decontamination of the fiber. A short analysis program with a sharp oven temperature ramp resulted in a better resolution and higher number of measurable volatile components. With these conditions, 96 volatile compounds were identified with little variation including 22 aldehydes, 8 ketones, 31 hydrocarbons, 12 alcohols, 8 nitrogen- and sulfurcontaining compounds, 5 pyrazines and 10 furans. A noticeable observation was the high number of hydrocarbons, aldehydes, ketones, alcohols and 2-alkylfurans which were generated from lipid decomposition especially the oxidation and degradation of unsaturated and saturate fatty acids. This implies that these compounds can be candidates for flavor specification of highly marbled beef such as Hanwoo flavor.

Removal Characteristics of NOx Using a Mixed Soil-Biofilter (토양 혼합여재를 이용한 질소산화물 제거특성)

  • Cho, Ki-Chul;Sin, Eun-Sang;Hwang, Gyeong-Cheol;Cho, Il-Hyoung;Lee, Nae-Hyun;Yeo, Hyun-Gu
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.3 s.61
    • /
    • pp.15-26
    • /
    • 2006
  • As traffic in city-centre around the world continues to increase, so levels of atmospheric pollutants continue to rise. High concentrations of NOx can have negative effects on human health, and we must find new ways to reduce their levels in the air we breathe. Nitrogen oxide gas (NOx), consisting of nitrogen monoxide (NO) and nitrogen dioxide $(NO_2)$ produced using $O_3$ oxidation, at a low concentration corresponding to that on roads as a result of exhaust from automobiles, was carried out to evaluate the removal characteristics of NOx through a laboratory-scale biofilter packed with soil as a packing material. A mixture media (yellow soil (30%): soil (40%): compost (10%): a used briquet (20%)) was applied. After about 1day of operation, the removal efficiency for $NO_2$ in all experiments with a constant condition ($25^{\circ}C$ and water humidity (60%)) was over 98%. The retention times of the section between phase I and phase II for formation and reduction of $NO_3$ NO and $NO_2$ on the initial $NO_3$ concentration was 50min $(O_3:195\;ppb),\;55min\;(O_3:925\;ppb),\;65min\;(O_3:1743\;ppb),\;70min\;(O_3:2616\;ppb),\;75min\;(O_3:3500\;ppb)$, respectively The soil biofilter system is a unique technology that purifies urban air by utilizing the natural processes that take place in the soil. Although some of the processes are quite complex, they can broadly be summarized as adsorption onto soil particles, dissolution into soil pore water, and biochemical.

Influence of Sintering Additives and Temperature on Fabrication of LPS-SiC (액상소결법에 의한 탄화규소 제조시 소결조제와 온도의 영향)

  • JUNG HUN-CHAE;YOON HAN-KI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.266-270
    • /
    • 2004
  • SiC materials have been extensively studied for high temperature components in advanced energy system and advanced gas turbine because it has excellent high temperature strength, low coefficient of thermal expansion, good resistance to oxidation and good thermal and chemical stability etc. However, the brittle characteristics of SiC such as low fracture toughness and low strain-to fracture still impose a severe limitation on practical applications of SiC materials. For these reasons, SiC/SiC composites can be considered as a promising for various structural materials, because of their good fracture toughness compared with monolithic SiC ceramics. But, high temperature and pressure lead to the degradation of the reinforcing jiber during the hot pressing. Therefore, reduction of sintering temperature and pressure is key requirements for the fabrication of SiC/SiC composites by hot pressing method. In the present work, monolithic Liquid Phase Sintered SiC (LPS-SiC) was fabricated by hot pressing method in Ar atmosphere at $1800^{\circ}C$ under 20MPa using $Al_2O_3,\;Y_2O_3\;and\;SiO_2$ as sintering additives in order to low sintering temperature and sintering pressure. The starting powder was high purity $\beta-SiC$ nano-powder with all average particle size of 30mm. The characterization of LPS-SiC was investigated by means of SEM and three point bending test. Base on the composition of sintering additives-, microstructure- and mechanical property correlation, tire compositions of sintering additives are discussed.

  • PDF

Characteristics of NO Oxidation Using NaClO2 (NaClO2를 이용한 NO 산화 특성)

  • Lee, Kiman;Byun, Youngchul;Koh, Dong Jun;Shin, Dong Nam;Kim, Kyoung Tae;Ko, Kyoung Bo;Cho, Moohyun;Namkung, Won;Mok, Young Sun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.988-993
    • /
    • 2008
  • The characteristics of NO oxidation using sodium chlorite ($NaClO_2$) powder have been investigated by a flow type packed-bed reactor, where the reaction temperature and the space velocity are varied in the range of $20{\sim}230^{\circ}C$ and $0.4-2.2{\times}10^5hr^{-1}$, respectively, and the simulation gas mixtures are composed of NO (0~200 ppm), $NO_2$ (0-200 ppm), $O_2$ (0~15%) and $H_2O$ (0~15%) within $N_2$ balance. It has been found that the oxidation efficiency of NO depends greatly on the reaction temperature, exhibiting the existence of critical reaction temperature at about $170^{\circ}C$ where the oxidation efficiency of NO is maximized and then abruptly decreased with further increase of reaction temperature, resulting in being negligible over $190^{\circ}C$. Such a behavior in the oxidation efficiency has been originated from the phase transition of $NaClO_2$ at about $170^{\circ}C$ to form $NaClO_3$, and NaCl which are chemically inactive toward the oxidation of NO. The chemical reaction of NO with $NaClO_2$ has been observed to produce $NO_2$, ClNO and $ClNO_2$, whereas that of $NO_2$ only OClO species. Additionally, we have also observed that the introduction of $O_2$ and $H_2O$ has little influence on the oxidation of NO.

Effects of Treatments on the Distribution of Volatiles in Artemisia princeps Pampan (쑥의 처리조건에 따른 휘발성 성분 변화)

  • Park, Min-Hee;Kim, Mi-Ja;Cho, Wan-Il;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.587-591
    • /
    • 2009
  • Volatiles in Artemisia princeps Pampan. cv. sajabal (sajabalssuk) and A. princeps Pampan. (ssuk) treated with different processing were analyzed using headspace-solid phase microextraction (HS-SPME)/gas chromatography- a mass selective detector (GC-MS). Sajabalssuk and ssuk were treated with steam distillation (SD) and freeze-dried/steam distillation (FD/SD) while controls were raw sajabalssuk and raw ssuk. Sajabalssuk had significantly more total volatiles than ssuk in control and FD/SD treated samples (p<0.05). Major volatiles in raw sajabalssuk were 2-hexenal, 1,8-cineol, trans-caryophyllene, and hexanal while those in raw ssuk were 1-hexanol, ${\beta}$-myrcene, limonene, and 2-hexenal, which implies that substantial lipid oxidation occurred in raw samples. Sajabalssuk with SD and FD/SD treatment had higher peak areas of 1,8-cineole, 4-terpineol, 1-octen-3-ol, and ${\alpha}$-terpineol while ssuk with SD and FD/SD treatment possessed 1,8-cineol, camphor, borneol, artemisia ketone, ${\alpha}$-thujone, and 1-octen-3-ol, which showed that steam distillation produced more volatiles from terpenoids than raw samples. Based on the results of HS-SPME/GC-MS, relative amounts of volatiles from lipid oxidation including 2-hexenal, hexanal, and 1-hexanol were reduced in sajabalssuk and ssuk with freeze-drying and/or steam distillation treatment.

Enhanced Fiber Structure of Carbonized Cellulose by Purification (정제 과정에 의한 탄화 셀룰로오스 섬유 구조의 증가)

  • Kim, Bong Gyun;Sohng, Jae Kyung;Liou, KwnagKyoung;Lee, Hei Chan
    • Applied Chemistry for Engineering
    • /
    • v.16 no.2
    • /
    • pp.257-261
    • /
    • 2005
  • The microbial cellulose is in a form of three dimensional net structures that consists of 20~50 nm fibrils. It possesses high crystallinity and orientation. It is difficult to synthesize large amount of fibrous carbon nanomaterials by the carbonization process using raw materials such as polyacrylonitrile (PAN), regenerated cellulose (Rayon) and pitch. However, it seems possible thru the application of microbial cellulose as raw material. The application of such cellulose can be further extended to the synthesis of highly oriented graphite fiber. Out of three different cellulose-producing strains, G. xylinus ATCC11142 was chosen as it has the highest productivity (0.066 g dried cellulose/15 mL medium). Tar is often produced during the carbonization of cellulose that limits the formation fibrous structure of the carbonized sample. In order to solve such a problem, pre-studied purification methods of carbon nanotube such as liquid phase oxidation, gas phase oxidation and filtration associated with ultrasonication were applied at the carbonized cellulose. In that case. only by filtration associated with ultrasonication, improved the formation of fiber structure of the carbonized cellulose.

Observation of Secondary Organic Aerosol and New Particle Formation at a Remote Site in Baengnyeong Island, Korea

  • Choi, Jinsoo;Choi, Yongjoo;Ahn, Junyoung;Park, Jinsoo;Oh, Jun;Lee, Gangwoong;Park, Taehyun;Park, Gyutae;Owen, Jeffrey S.;Lee, Taehyoung
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.300-312
    • /
    • 2017
  • To improve the understanding of secondary organic aerosol (SOA) formation from the photo-oxidation of anthropogenic and biogenic precursors at the regional background station on Baengnyeong Island, Korea, gas phase and aerosol chemistries were investigated using the Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS) and the Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS), respectively. HR-ToF-AMS measured fine particles ($PM_1$; diameter of particle matter less than $1{\mu}m$) at a 6-minute time resolution from February to November 2012, while PTR-ToF-MS was deployed during an intensive period from September 21 to 29, 2012. The one-minute time-resolution and high mass resolution (up to $4000m{\Delta}m^{-1}$) data from the PTR-ToF-MS provided the basis for calculations of the concentrations of anthropogenic and biogenic volatile organic compounds (BVOCs) including oxygenated VOCs (OVOCs). The dominant BVOCs from the site are isoprene (0.23 ppb), dimethyl sulphide (DMS, 0.20 ppb), and monoterpenes (0.38 ppb). Toluene (0.45 ppb) and benzene (0.32 ppb) accounted for the majority of anthropogenic VOCs (AVOCs). OVOCs including acetone (3.98 ppb), acetaldehyde (2.67 ppb), acetic acid (1.68 ppb), and formic acid (2.24 ppb) were measured. The OVOCs comprise approximately 75% of total measured VOCs, suggesting the occurrence of strong oxidation processes and/or long-range transported at the site. A strong photochemical aging and oxidation of the atmospheric pollutants were also observed in aerosol measured by HR-ToF-AMS, whereby a high $f_{44}:f_{43}$ value is shown for organic aerosols (OAs); however, relatively low $f_{44}:f_{43}$ values were observed when high concentrations of BVOCs and AVOCs were available, providing evidence of the formation of SOA from VOC precursors at the site. Overall, the results of this study revealed several different SOA formation mechanisms, and new particle formation and particle growth events were identified using the powerful tools scanning mobility particle sizer (SMPS), PTR-ToF-MS, and HR-ToF-AMS.

Volatile compounds and some physico-chemical properties of pastırma produced with different nitrate levels

  • Akkose, Ahmet;Unal, Nazen;Yalinkilic, Baris;Kaban, Guzin;Kaya, Mukerrem
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1168-1174
    • /
    • 2017
  • Objective: The aim of the study was to evaluate the effects of different nitrate levels (150, 300, 450, and 600 ppm $KNO_3$) on the volatile compounds and some other properties of pastırma. Methods: Pastırma samples were produced under the controlled condition and analyses of volatile compounds, and thiobarbituric acid reactive substances (TBARS) as an indicator of lipid oxidation, non-protein nitrogenous matter content as an indicator of proteolysis, color and residual nitrite were carried out on the final product. The profile of volatile compounds of pastırma samples was analyzed by gas chromatography/mass spectrometry using a solid phase microextraction. Results: Nitrate level had a significant effect on pH value (p<0.05) and a very significant effect on TBARS value (p<0.01). No significant differences were determined in terms of $a_w$ value, non-protein nitrogenous substance content, color and residual nitrite between pastırma groups produced by using different nitrate levels. Nitrate level had a significant (p<0.05) or a very significant (p<0.01) effect on some volatile compounds. It was determined that the amounts and counts of volatile compounds were lower in the 450 and especially 600 ppm nitrate levels than 150 and 300 ppm nitrate levels (p<0.05). While the use of 600 ppm nitrate did not cause an increase in residual nitrite levels, the use of 150 ppm nitrate did not negatively affect the color of pastırma. However, the levels of volatile compounds decreased with an increasing level of nitrate. Conclusion: The use of 600 ppm nitrate is not a risk in terms of residual nitrite in pastırma produced under controlled condition, however, this level is not suitable due to decrease in the amount of volatile compounds.