• Title/Summary/Keyword: Gas nozzle

Search Result 798, Processing Time 0.026 seconds

A Study on the Design and Development of Gas Burner for Gas Furnace (가스온풍기용 가스버너의 설계 및 개발에 관한 연구)

  • 박용호;염만오;심성훈;엄기훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of this study is to modify the kerosene furnace, which is forced flue type with 15000kcal capacity, to gas furnace satisfying for CITY gas, LNG gas and LPG gas. The gas furnace, a kind of gas appliance, is mainly used for heating houses by combusion of gas. This paper describes briefly the design technology for gas burner which is most important in replacing kerosene fuel with gas fuel. Especially, the design for gas nozzle is constructed by theoretical and experimental method. It is found that the experimental results of the modified gas burner are good agreement with the theoretical results for calorific value and combustion efficiency. The result of this study will contribute in the design skill and of gas burner and similar gas appliance, and the pursuit for reduction of fuel cost as well as atmospheric pollution.

  • PDF

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.

Effect of Stagnation Temperature on the Supersonic Flow Parameters with Application for Air in Nozzles

  • Zebbiche, Toufik;Youbi, ZineEddine
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.13-26
    • /
    • 2006
  • When the stagnation temperature of a perfect gas increases, the specific heat for constant pressure and ratio of the specefic heats do not remain constant any more and start to vary with this temperature. The gas remains perfect: its state equation remains always valid, with exception that it will be named by calorically imperfect gas. The aim of this research is to develop the relations of the necessary thermodynamics and geometrical ratios. and to study the supersonic flow at high temperature. lower than the threshold of dissociation. The results are found by the resolution of nonlinear algebraic equations and integration of complex analytical functions where the exact calculation is impossible. The dichotomy method is used to solve the nonlinear equation. and the Simpson algorithm for the numerical integration of the found integrals. A condensation of the nodes is used. Since. the functions to be integrated have a high gradient at the extremity of the interval of integration. The comparison is made with the calorifcally perfect gas to determine the error made by this last. The application is made for the air in a supersonic nozzle.

Simulation of Energy Conversion Characteristics of OMACON LM-MHD Systems (OMACON형 LM-MHD 시스템에서의 에너지전환특성 시뮬레이션)

  • 김창녕
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • The characteristics of the flow and energy conversion in OMACON liquid-metal MHD system are investigated. Numerical simulation of two-phase flow in the OMACON system without magnetic field was carried out by the Phoenics code and the energy conversion characteristics are studied in association with the fact that the mechanical energy loss at the nozzle of the OMACON system are to be converted into electrical energy. In this system, working fluid (gas) is injected through the mixer located at the bottom of the riser, and is mixed with hot liquid metal. Therefore in the riser two-phase flow is developed under the influence of the gravity. In this study, the interaction between the gas and liquid is considered by the use of IPSA(InterPhase Slip Algorithm) where standard drag coefficient has been used. It has been assumed that in the flow regime the liquid is continuous and the gas is dispersed. For the liquid and gas, the continuity equations, momentum equations and energy equations are solved respectively in association with void fraction in the flow field. In order to calculate the energy conversion efficiency, firstly the ratio of the mechanical energy loss of liquid metal flow at the nozzle to the input thermal energy is considered. Secondly flow pattern of liquid metal in the generator has been analyzed, and the characteristics of the conversion of the mechanical energy into the electrical energy has been investigated. For an representative case where Hartmann number is 540 and magnetic field is 0.35 T, the present analysis shows that the energy conversion efficiency is 0.653. This result is considered to be reasonable in comparison with published experimental results.

  • PDF

Study of Micro-Supersonic Impinging Jets and Its Application to the Laser Machining (마이크로 초음속제트의 충돌유동과 레이저 가공 응용에 관한 연구)

  • Min, Seong-Kyu;Yu, Dong-Ok;Lee, Yeol;Cheong, Jo-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2009
  • Characteristics of micro-sonic/supersonic axi-symmetric jet impinging on a flat plate with a pre-drilled hole were both experimentally and numerically studied, to observe the role of assist-gas jet to eject melted materials from the cut zone in the laser machining. For various Mach numbers of the nozzle and the total pressures of the assist gas, detailed impinging jet flow structures over the plate and the variations of mass flux through the pre-drilled hole were observed. It was found that the present experimental and numerical results show a good agreement, which proves the accountability of the present work. From the present study, it was also observed that the mass flow rate through the hole was closely related with the total pressure loss caused by the Mach disc on the work piece, and that supersonic nozzle could perform more efficient roles as blowing the assist-gas jet in the laser machining, as compared to sonic nozzles.

Analysis of Damage Patterns for Gas Turbine Combustion Liner according to Model Change (모델 변천에 따른 가스터빈 연소기 라이너의 부위별 손상유형 분석)

  • Kim, Moon-Young;Yang, Sung-Ho;Park, Sang-Yeol;Kim, Sang-Hoon;Park, Hye-Sook;Won, Jong-Beom
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2862-2867
    • /
    • 2008
  • High-temperature components of gas turbine operated for certain period of time can be reused by being repaired or rejuvenated. In case of the gas turbine combustion liners, the biggest and the most important one in the high-temperature components, come in a repair shop after operated for 8,000 or 12,000 hours according to the model and go through the repair and rejuvenation in order to be reused. A stated combustion liner is the first channel which has the combustion gas reached a nozzle from a fuel nozzle. Materials and coating properties of old and new model combustion liners were investigated. To repair these components after the visual inspection, the coatings of combustion liners were removed and then FPI(Fluorescent Penetrant Inspection), a kind of the NDI(Non-Destructive Inspection), was conducted. Damage patterns and the number of the damaged components were classified and analyzed based on data provided from the visual inspection over a long period of time. Focusing on the difference between old model and new model combustion liners, we analyzed the damage distribution and changes and consequently concluded that new model combustion liner would increase repair rate.

  • PDF

An Experimental Study on Heat Transfer Characteristics of Synthetic Gas($H_2/CO$)Air Premixed Flames in an Impinging Jet Burner - Part 1 : Stretched Lift-off Flames (충돌제트 버너에서 합성가스($H_2/CO$) 공기 예혼합 화염의 열전달 특성에 관한 실험적 연구 - Part 1 : 스트레치된 부상 화염)

  • Kang, Ki-Joong;Jo, Joon-Ik;Lee, Kee-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.453-456
    • /
    • 2011
  • An experimental investigation of the heat transfer characteristics of stretched premixed flames using Synthetic gas has been performed. Hydrogen and carbon mon-oxide which could be extracted from coal gasification process are the main fuel of synthetic-gas. Heat flux at the stagnation point was increased as global strainrate was increased, then the heat flux was decreased when a global strainrate reached a sudden point. Heat flux at the stagnation point is also affected by nozzle to impingement distance. Heat flux was increased as nozzle to impingement place distance was increased. This study is a foundation study of practical use of secondary gases from coals.

  • PDF