• 제목/요약/키워드: Gas nozzle

검색결과 798건 처리시간 0.03초

마이크로 터보제트엔진 S형상 배기노즐 플룸의 적외선 신호 특성 실험연구 (An Experimental Study of the Infrared Signal Characteristics on the S-Nozzle Plume of the Micro Turbojet Engine)

  • 김선미;이정석;최성만;명노신;김원철
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.583-586
    • /
    • 2017
  • 마이크로 터보제트엔진을 이용하여 S형상 배기노즐의 플룸의 적외선 신호 특성을 이해하기 위하여 적외선 신호 특정 연구를 수행하였다. 엔진 배기노즐은 원형노즐과 가로세로비가 5인 사각형 노즐 그리고 가로세로비가 5.2인 S형상의 배기노즐을 제작하여 실험을 수행하였다. 배기가스에서 방출되는 적외선 신호는 가로세로비가 클수록 적외선 신호의 크기가 점차 감소하는 경향을 보였고 배기노즐의 형상이 S형상의 경우 사각형 노즐 보다 적외선 신호가 28.4% 감소하는 것을 확인하였다.

  • PDF

연속 아연 도금 두께에 관한 수치 해석적 연구 (A NUMERICAL STUDY ON THE COATING THICKNESS IN CONTINUOUS HOT-DIP GALVANIZING)

  • 이동원;신승영;조태석;권영두;권순범
    • 한국전산유체공학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2009
  • To control the coating thickness of zinc in the process of continuous hot-dip galvanizing, it is known from early days that the gas wiping through an air knife system is the most effective because of the obtainable of uniformity of coating thickness, possibility of thin coating, working ability in high speed and simplicity of control. But, the gas wiping using in the galvanizing process brings about a problem of splashing from the strip edge for a certain high speed of coating. Also, it is known that the problem of splashing directly depends upon the galvanizing speed and nozzle stagnation pressure. In theses connections, in the present study, we proposed two kinds of air knife systems having the same expansion rate of nozzle, and the jet structures and coating thicknesses from a conventional and new proposed nozzles are compared. In numerical analysis, the governing equations consisted of two-dimensional time dependent Navier-Stokes equations, standard k-e turbulence model to solve turbulence stress and so on are employed. As a result, it is found that it had better to use the constant rate nozzle from the point view of the energy saving to obtain the same coating thickness. Also, to enhance the cutting ability at the strip, it is advisable to use an air knife with the constant expansion rate nozzle.

Effect of Air Velocity on Combustion Characteristics in Small-Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회지
    • /
    • 제10권1호
    • /
    • pp.1-6
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressure-swirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates ranging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2$, NOx, $SO_2$, flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity on $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

Effect of Air Velocity on Combustion Characteristics Scale Burner

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2005년도 동계 학술대회 논문집
    • /
    • pp.76-82
    • /
    • 2005
  • This paper presents the combustion characteristics of hydrocarbon fuel from a conventional pressureswirl nozzle of a small-scale burner. The nozzle has orifice diameters of 0.256 mm and liquid flow rates raging from 50 to 64 mL/min were selected for the experiments. The furnace temperature distribution along the axial distance, the gas emission such as CO, $CO_2,\;NOx,\;S0_2,$ flue gas temperature, and combustion efficiency were studied. The local furnace and flue gas temperatures decreased with an increase in air velocity. At injection pressures of 1.1 and 1.3 MPa the maximum furnace temperatures occurred closer to the burner exit, at an axial distance of 242 mm from the diffuser tip. The CO and $CO_2$ concentrations decreased with an increase in air velocity, but they increased with an increase in injection pressure. The effect of air velocity on NOx was not clearly seen at low injection pressures, but at injection pressure of 1.3 MPa it decreased with an increase in air velocity. The effect of air velocity $SO_2$ concentration level is not well understood. The combustion efficiency decreased with an increase in air velocity but it increased with an increase in injection pressure. It is recommended that injection pressure less than 0.9 MPa with air velocity not above 8.0 m/s would be suitable for this burner.

  • PDF

터빈 매니폴드 모사장치를 이용한 액체로켓엔진 가스발생기 연소시험 (Hot Firing Tests of a Gas Generator for Liquid Rocket Engine using a Turbine Manifold Simulator)

  • 임병직;김문기;김종규;최환석
    • 한국추진공학회지
    • /
    • 제19권5호
    • /
    • pp.22-30
    • /
    • 2015
  • 개방형 사이클의 액체로켓엔진에서는 추진제 중 일부를 연소시켜 터빈 구동용 가스를 생성시키는 가스발생기가 사용되며, 개방형 사이클 액체로켓엔진의 주요 구성품으로서 가스발생기 자체의 연소성능 및 특성을 파악하기 위한 연소시험이 요구된다. 하지만, 가스발생기에서 생성된 연소가스는 터빈 매니폴드의 터빈 노즐에서 질식이 이루어지기 때문에 가스발생기뿐만 아니라 터빈 매니폴드 내부 부피를 고려해야만 가스발생기의 연소 성능 및 특성, 그리고 음향 특성을 정확히 파악할 수 있다. 따라서, 본 논문에서는 터빈 매니폴드 모사장치를 이용한 가스발생기 연소시험 결과를 기술하고 가스발생기 단독 연소시험 결과를 이용한 특성 예측을 설명한다.

An Experimental Study of Underexpanded Moist Air Jet Impinging on a Flat Plate

  • Lee, D.W.;S.C. Baek;S.B. Kwon;Kim, H.D.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.768-773
    • /
    • 2004
  • When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is underexpanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with nonequilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics can not even know. In the present study, the effect of the nonequilibrium condensation on the underexpanded moist air jet impinging on a vertical flat plate is investigated experimentally. Flow visualization and impact pressure measurement are performed for various relative humidities and flat plate positions. The obtained results show the plate shock and Mach disk are dependent on the nozzle pressure ratio and the relative humidity, but for a given nozzle pressure ratio, the diameters of the plate shock and Mach disk depend on the stagnation relative humidity. The impact pressure deviation from the flow of without condensation is large, as the relative stagnation humidity increases.

  • PDF

열처리로 직화버너에서 연료-공기 혼합에 따른 화염 영향 (Flame characteristics of direct fired burner in fuel-air mixing conditions)

  • 이철우;김영호;김인수;홍정구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.285-288
    • /
    • 2014
  • Experiments have been performed for the burners used in the non-oxidizing direct fired furnaces for the cold rolled plate to investigate the effect of fuel/air mixing patterns of the burner nozzle on flame shape, temperature and combustion gas concentration. CFD simulation has also been performed to investigate the mixing state of air-fuel for a nozzle mixing burner and a partially pre-mixing burner. A partially pre-mixing burner showed that flame temperature increased up to $26^{\circ}C$ on average compared than that of the nozzle mixing. It also showed that the mixing distance is important at the partially pre-mixing burner. Test results for a partially pre-mixing burner showed that the residual oxygen concentration and the volume ratio of $CO/CO_2$ of the flame were applicable to be used in field furnaces.

  • PDF

로켓 노즐 재료의 열충격특성에 관한 연구 (A Study on the Thermal Shock Characteristics of the Rocket Nozzle Material)

  • 이장원;이영신;김재훈;김승중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.562-566
    • /
    • 2004
  • Thermal shock is a physical phenomenon that occurs in the condition of the exposure of a rapidly large temperature and pressure change of in the quenching condition of material. The rocket nozzle is exposed to high temperature combustion gas, it may have failure and erosion deformation. So, it is important to select a suitable material having excellent thermal shock properties and evaluate these materials in rocket design. In this study, the temperature gradient and crack initiation of rocket nozzle material is investigated using by FEM under thermal shock condition. This is very important information in the design process of thermal structure.

  • PDF

환형 가스터빈 연소기에서 종방향 및 횡방향 음향모드 커플링 (Acoustic Coupling between Longitudinal and Transverse Modes in an Annular Gas Turbine Combustor)

  • 김지환;김대식
    • 한국연소학회지
    • /
    • 제23권1호
    • /
    • pp.13-20
    • /
    • 2018
  • Transverse acoustic mode in annular combustion chambers affects air-fuel mixing characteristics in the nozzle and can result in heat release fluctuations in the combustor. In addition, the acoustic mode coupling between the nozzle and the combustion chamber is one of the key parameters determining combustion instability phenomenon in the annular combustor. In this study, acoustic coupling between the nozzle and annular combustor was numerically analyzed using 3D-based in house FEM code. As a result, it was found that the acoustic mode inside the combustion chamber at anti-node locations of the transverse mode was strongly influenced by the nozzle inlet boundary conditions.

극간절연회복성능 향상을 위한 초고압GCB의 노즐형상설계 (Design of Nozzle Shape for UHV GCB to Improve the Dielectric Recovery Characteristics between Electrodes)

  • 송기동;박경엽;신영준;권기영;송원표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.479-481
    • /
    • 1995
  • This paper presents a method witch tan improve the dielectric recovery characteristics of UHV class gas circuit breakers by changing the nozzle shape. To calculate the dielectric recovery voltage between electrodes, the flow field and electric field analysis in a 362kV model interrupter has been performed with the commercial programs, RAMPANT and FLUX2D, respectively. As a result, we found that the nozzle shape affects the characteristics of dielectric recovery between electrodes and obtained great improvement of it by the changing the downstream nozzle shape.

  • PDF