• Title/Summary/Keyword: Gas nitride

Search Result 312, Processing Time 0.022 seconds

Synthesis and Characterization of Tin Nitride Thin Films Deposited by Low Nitrogen Gas Ratio

  • Park, Ju-Yeon;Gang, Yong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.173.2-173.2
    • /
    • 2014
  • Thin nitride thin films were synthesized by reactive radio-frequency magnetron sputtering in the ultra high vacuum (UHV) chamber. To control the characteristics of thin films, tin nitride thin films were obtained various argon and nitrogen gas mixtures, especially low nitrogen gas ratios. Tin nitride thin films were analyzed with alpha step, scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and 4 point probe measurement. The result of alpha step and SEM showed that the thickness of thin nitride thin films were decreased with increasing nitrogen gas ratios. The metallic tin structure was decreased and the amorphous tin nitride structure were observed by XRD with higher nitrogen gas ratios. The oxidation state of tin and nitride were studied with high resolution Sn 3d and N 1s XP spectra.

  • PDF

A Study on Machinability of Silicon Nitride Ball Sintered by Various Gas Pressure Sintering(GPS) Conditions (가스압 소결조건에 따른 질화규소볼의 가공성에 대한 연구)

  • 이수완;김성호;정용선
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • The effect of sintering conditions on the sinterability for silicon nitride has been studied by many in-vestigators. However the effect of sintering conditions on the machinability which is the major barrier to the field applications of the ceramic components has not been fully studied. In this study the sintering con-ditions such as temperature gas pressure and time in silicon nitride were varied. The physical and mechan-ical properties of the gas pressure sintered (GPS) silicon nitride were measured. The optimum mi-crostructure of silicon nitride with the excellent machinability was investigated by MFG(magnetic-fluid grinding) technique. An attempt was made to figure out how the mechanical properties influence upon the machinability of silicon nitride ball.

  • PDF

Behavior of Initial Formation of Iron Nitride on Carbon Steel at Low Pressure Gas Nitriding (저압가스질화에서 탄소강의 초기 화합물층 형성 거동)

  • Kim, Yoon-Kee;Kim, Sang-Gweon
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.75-81
    • /
    • 2011
  • Growth behaviors of iron-nitride on S45C steels at low pressure gas nitriding were examined. Surfaces of the steels covered with fine and porous oxide during the pre-oxidation using $N_2O$ gas. Well faceted particles connected with them were observed after 1 min nitriding. They grew steadily and filled inter-pores during additional nitriding process. From the X-ray diffraction analysis, ${\gamma}'$-iron nitride was dominantly formed at the initial stage but the amount of ${\varepsilon}$-iron nitride was rapidly increased as nitriding treatment time. The porous layer was formed on the particles and thickened up to half of nitride layer after 60 min nitriding. The observed growth behaviors were discussed in internal stress related with volume expansion involved in transforming from iron to iron-nitrides.

Effects of the Addition of $La_2O_3$ on Mechanical Properties and Machinability of $Si_3N_4$ Ball

  • Sang Yang Lee;Sung Ho Kim;Soo Wohn Lee
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.364-369
    • /
    • 2000
  • Silicon nitride with adding La$_2$O$_3$ was sintered by gas pressure sintering (GPS) technique at $1950^{\circ}C$, in $N_2$ gas at 3 MPa, for 2h. Mechanical properties such as hardness, flexural strength, and fracture toughness were determined as a function of the GPS holding time and the contents of La$_2$O$_3$ in silicon nitride. Also machinability of silicon nitride ball with various GPS holding time and amount of La$_2$O$_3$ was evaluated by magnetic fluid grinding (MFG) method. In this study it was found that machinability was influenced significantly with La$_2$O$_3$ contents. However, the different GPS holding time did not affect the machinability very much.

  • PDF

The Sheet Resistance Properties of Tungsten Nitride Thin films for Intergrated Circuit (IC소자용 질화 텅스텐 박막의 면저항 특성)

  • 이우선;정용호;김남오;정종상;유병수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.94-97
    • /
    • 1997
  • We investigated the sheet resistance properties of tungsten nitride thin films deposited by RF and DC sputtering system. It deposited at various conditions that determine the sheet resistance. The properties of the sheet resistance of these films were measured under various conditions. Sheet resistance analysed under the flow rate of the argon gas and contents of nitrogen from nitrogen-argon gas mixtures. We found that these sheet resistance were largely depend on the temperature of substrate, gas flow rate and RF power. Very high and low sheet resistance of tungsten films obtained by DC sputtering. As the increase of contents of nitrogen gas obtained from nitrogen-argon gas mixture, tungsten nitride thin films deposited by the reactive DC sputtering and the sheet resistance of these films were increased.

  • PDF

Synthesis of Boron-Nitride Film by Plasma Assisted Chemical Vapor Deposition Using $BCl3-NH3-Ar$ Mixed Gas ($BCl3-NH3-Ar$계의 플라즈마화학증착공정을 이용한 질화붕소막의 합성)

  • 박범수;백영준;은광용
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.249-256
    • /
    • 1997
  • The effect of process parameter of plasma assisted chemical vapor deposition (PACVD) on the variation of the ratio between cubic boron nitride (c-BN) and hexagonal boron nitride (h-BN) in the film was in-vestigated. The plasma was generated by electric power with the frequency between 100 and 500 KHz. BCl3 and NH3 were used as a boron and nitrogen source respectively and Ar and hydrogen were added as a car-rier gas. Films were composed of h-BN and c-BN and its ratio varied with the magnitude of process parameters, voltage of the electric power, substrate bias voltage, reaction pressure, gas composition, sub-strate temperature. TEM observation showed that h-BN phase was amorphous while crystalline c-BN par-ticle was imbedded in h-BN matrix in the case of c-BN and h-BN mixed film.

  • PDF

A Study on the Microstructures and Properties of Sulfnitrided SCM440 Steel by Micro-pulse Plasma (SCM440강에 형성된 플라즈마 침류질화층의 조직과 특성에 관한 연구)

  • 이재식
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.266-277
    • /
    • 1998
  • The effects of $H_2S$ gas ratio, temperature and time on the case depth, hardness, and sulfide and nitride formation on the surface of sulfnitrided SCM440 steel have been studied by micro-pulse plasma technique. The thickness of compound layer of sulfide and nitride increased with the increase of time, temperautre and $H_2S$ gas ratio. But surface hardness decreased with the increase of soft sulfide layer because the hard nitride layer formed beneath the sulfide. The thickness of sulfide layer was about 10$\mu\textrm{m}$ abpve 0.0088% of $H_2S$ gas. The highest surface hardness of the compound layer was Hv835 at $530^{\circ}C$, 1hr and 0.06% of $H_2S$ gas. X-ray diffraction indicated that the surface products were $Fe_{1_x}S$, $Fe_{2.5}N$ and $Fe_4N$. It was confirmed by EPMA that sulfide only existed in the surface.

  • PDF

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

Surface Micromachining of TEOS Sacrificial Layers by HF Gas Phase Etching (HF 기상식각에 의한 TEOS 희생층의 표면 미세가공)

  • 장원익;이창승;이종현;유형준
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.725-730
    • /
    • 1996
  • The key process in silicon surface micromachining is the selective etching of a sacrificial layer to release the silicon microstructure. The newly developed anhydrous HF/$CH_3$OH gas phase etching of TEOS (teraethylorthosilicate) sacrificial layers onto the polysilicon and the nitride substrates was employed to release the polysilicon microstructures. A residual product after TEOS etching onto the nitride substrate was observed on the surface, since a SiOxNy layer is formed on the TEOS/nitride interface. The polysilicon microstructures are stuck to the underlying substrate because SiOxNy layer does not vaporize. We found that the only sacrificial etching without any residual product and stiction is TEOS etching onto the polysilicon substrate.

  • PDF

Synthesis of Ultrafine Silicon Nitride Powders by the Vapor Phase Reaction (기상반응에 의한 $Si_3N_4$ 미세분말의 합성)

  • 유용호;어경훈;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.44-49
    • /
    • 2000
  • Silicon nitride powders, were synthesized by the vapor phase reaction using SiH4-NH3 gaseous mixture. The reaction temperature, ratio of NH3 to SiH4 gas and the overall gas quantity were varied. The synthesized powders were characterized using X-ray, TEM, FT-IR and EA. The synthesized silicon nitride powders were in amorphous state, and the average particle size was about 100nm. TEM analysis revealed that the particle size decreased with increasing reaction temperature and gas flow quantity. As-received amorphous powders were annealed in nitrogen atmosphere at 140$0^{\circ}C$ for 2h, then the powders were completely crystallized at 0.2 ratio of NH3 to SiH4.

  • PDF