• 제목/요약/키워드: Gas metal Arc Welding Process

Search Result 124, Processing Time 0.021 seconds

Variation of Hardness & Electrical conductivity for Cu-P and Cu-Cr Contact Tips During GMA Welding Process (GMA용접 중 Cu-P와 Cu-Cr계 콘택트팁의 경도와 전기전도도 변화)

  • 김가희;김희진;김남훈;유회수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.191-193
    • /
    • 2004
  • GMA(Gas Metal Arc)용접에서는 콘택트 팁이 토치 선단에 위치하여 용접 와이어를 송급하여 준다. 이러한 콘택트 팁의 주된 기능은 용접 전류를 와이어에 전송시켜주고, 와이어를 용접하고자 하는 위치로 유도하는 것이다. (중략)

  • PDF

A Study on Effect of Flex Additions for Selecting the Process Parameters in GMA Welding processes (GMA 용접공정에서 공정변수 선정을 위한 플럭스 첨가에 관한 연구)

  • Kim, In-Ju;Kim, Jun-Ki
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • As the quality of a weld joint is strongly influenced by process parameters the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. In this study, prepared by ${\Phi}1.6mm$ GMA welding of metal wire nose Advice jowelui 350A 600A grade level inverter welder and DAIHEN SCR's were carried out using welding. Welding conditions were 5.5m/min wire feed rate the welding current is rapidly transmit approximately 260A, welding voltage was about 30V. CTWD a 22mm, shielding gas was Ar 20L/min and the welding speed was a 240mm/min. Using data collected during welding equipment welding current and welding voltage waveform was analyzed by measuring the volume of the transition mode. Addition of $CaCO_3$ as a loss of the spread of the weld bead dilution rate decreased, suggesting that, GMA in the overlay welding bead shape control, dilution control and may be used as a welding flux is considered. Stabilizing effect of the arc by the Ca-containing $CaF_2$, $CaCO_3$, $CaMg(CO_3)_2$, respectively, welding flux 0.1wt.% added GMA welding and weld overlay were evaluated with dilution, $CaF_2$, and $CaMg(CO_3)_2$ added to the dilution of Seemed to increase.

MEASUREMENT OF SURFACE TENSION OF MOLTEN METALS IN ARC WELDING

  • Shinobu Satonaka;Shigeo Akiyoshi;Inoue, Rin-taro;Kim, Kwang-Ryul
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.757-762
    • /
    • 2002
  • Many reports have been shown that the buoyancy, electromagnetic force, surface tension, and gas shear stress are the driving forces of weld pool circulation in arc welding. Among them, the surface tension of molten metal plays an important role in the flow in weld pool, which are clarified by the specially designed experiments with small particles as well as the numerical simulations. The surface tension is also related to the penetration in arc welding. Therefore, a quantitative evaluation of surface tension is demanded for the development of materials and arc process control. However, there are few available data published on the surface tension of molten metals, since it depends on the temperature and the composition of materials. In this study, a new method was proposed for the evaluation of surface tension and its temperature dependence, in which it is evaluated by the equilibrium condition of acting forces under a given surface geometry, especially back surface. When this method was applied to the water pool and to the back surface of molten pool in the stationary gas tungsten arc welding of thin plate, following results were obtained. In the evaluation of surface tension of water, it was shown that the back surface geometry was very sensitive to the evaluation of surface tension and the evaluated value coincided with the surface tension of water. In the measurement of molten pool in the stationary gas tungsten arc welding, it was also shown that the comparison between the surface tension and temperature distribution across the back surface gave the temperature dependent surface tension. Applying this method to the mild steel and stainless steel plates, the surface tension with negative gradient for temperature is obtained. The evaluated values are well matched with ones in the published papers.

  • PDF

The Inference System of Bead Geometry in GMAW (GMA 용접공정의 비드형상 추론기술)

  • Kim, Myun-Hee;Choi, Young-Geun;Shin, Hyeon-Seung;Lee, Moon-Hwan;Lee, Tae-Young;Lee, Sang-Hyoup
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.2
    • /
    • pp.111-118
    • /
    • 2002
  • In GMAW(Gas Metal Arc Welding) processes, bead geometry (penetration, bead width and height) is a criterion to estimate welding quality, Bead geometry is affected by welding current, arc voltage and travel speed, shielding gas, CTWD (contact-tip to workpiece distance) and so on. In this paper, welding process variables were selected as welding current, arc voltage and travel speed. And bead geometry was reasoned from the chosen welding process variables using neuro-fuzzy algorithm. Neural networks was applied to design FLC(fuzzy logic control), The parameters of input membership functions and those of consequence functions in FLC were tuned through the method of learning by backpropagation algorithm, Bead geometry could he reasoned from welding current, arc voltage, travel speed on FLC using the results learned by neural networks. On the developed inference system of bead geometry using neuo-fuzzy algorithm, the inference error percent of bead width was within ${\pm}4%$, that of bead height was within ${\pm}3%$, and that of penetration was within ${\pm}8%$, Neural networks came into effect to find the parameters of input membership functions and those of consequence in FLC. Therefore the inference system of welding quality expects to be developed through proposed algorithm.

  • PDF

Welding Gap Detecting and Monitoring using Neural Networks

  • Kang, Sung-In;Kim, Gwan-Hyung;Lee, Sang-Bae;Tack, Han-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.539-544
    • /
    • 1998
  • Generally, welding gap is a serious factor of a falling-off in weld quality among various kind of weld defect. Welding gap is created between two work piece in GMAW(Gas Metal Arc Welding) of horizontal fillet weld because surface of workpiece is not flat by cutting process. In these days, there were many attempts to detect welding gap. though we prevalently use the vision sensor or arc sensor in welding process, it is difficult to detect welding gap for improvement of welding quality. But we have a trouble to find relationship between welding gap and many welding parameters due to non-linearity of welding process. As mentioned about the various difficult problem, we can detect welding gap precisely using neural networks which are able to model non-linear function. Also, this paper was proposed real-time monitoring of weld bead shape to find effect of welding gap and to estimate weld quality. Monitoring of weld bead shape examined the correlation of welding parameters with bead eometry using learning ability of neural networks. Finally, the developed system, welding gap detecting system and bead shape monitoring system, is expected to the successful capability of automation of welding process by result of simulation.

  • PDF

Mechanical Properties of Joints according to Welding Methods and Sensitivity Analysis of FSW's Welding Variables for A6005 Extruded Alloy of Rolling Stock (철도차량용 A6005 압출재의 용접방법에 따른 접합부 기계적 특성 및FSW 용접 변수의 민감도 분석)

  • Kim, Weon-Kyong;Won, Si-Tae;Goo, Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.131-138
    • /
    • 2010
  • Recently, extruded aluminium-alloy panels have been used in the car bodies in order to meet the needs for the speed-up and light-weight of the railway vehicles. Most of the car bodies were jointed by arc weldings, like GMAW (GasMetal Arc Welding) and GTAW (Gas Tungsten Arc Welding), but these weldings became fairly worse the mechanical properties of the junction than the base metal. Nowadays, FSW (Friction Stir Welding), which is superior to the arc weldings, has been applied in the railway vehicles. In this study, the mechanical properties of the joints in both FSW and GMAW for A6005 extruded aluminium-alloy sheets have discussed. In addition, the relationships between the welding conditions and the mechanical properties for the joint of FSW have analyzed through the sensitivity analysis. It can be concluded that the mechanical properties for the joint of FSW are better than those of GMAW and the welding speed is the most sensible welding condition in the process of FSW.

A Study on Real-time Prediction of Bead Width on GMA Welding (GMA 용접에서 실시간 비드폭 예측에 관한 연구)

  • Son, Joon-Sik;Kim, Ill-Soo;Kim, Hak-Hyoung
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.64-70
    • /
    • 2007
  • Recently, several models to control weld quality, productivity and weld properties in arc welding process have been developed and applied. Also, the applied model to make effective use of the robotic GMA(Gas Metal Arc) welding process should be given a high degree of confidence in predicting the bead dimensions to accomplish the desired mechanical properties of the weldment. In this study, a development of the on-line learning neural network models that investigate interrelationships between welding parameters and bead width as well as apply for the on-line quality control system for the robotic GMA welding process has been carried out. The developed models showed an excellent predicted results comparing with the predicted ability using off-line learning neural network. Also, the system will extend to other welding process and the rule-based expert system which can be incorporated with integration of an optimized system for the robotic welding system.

Usage of Multiple Regression Analysis in Prediction System of Process Parameters for Arc Robot Welding (아크로봇 용접 공정변수 예측시스템에 다중회귀 분석법의 사용)

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.871-877
    • /
    • 2008
  • It is important to investigate the relationship between weld process parameters and weld bead geometry for adaptive arc robot welding. Howeve, it is difficult to predict an exact back-bead owing to gap in process of butt welding. In this paper, the quantitative prediction system to specify the relationship external weld conditions and weld bead geometry was developed to get suitable back-bead in butt welding which is widely applied on industrial field. Multiple regression analysis for the prediction of process parameters was used as the research method. And, the results of the prediction method were compared and analyzed.

STATUS OF WELDING FOR POWER PLANT FACILITIES

  • Hur, Sung-do
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.342-348
    • /
    • 2002
  • The welding technology for production of power plant facility as for other industries has been progressing forward automation and mechanization for cost reduction and shortening of cycle time. The welding for boiler tube is automated or mechanized as the parts and subassemblies of tubes are conveyed automatically in the shop. The temperature of boiler stearn is being progressively increased for higher plant efficiency. The welding of nuclear component is characterized by heavy thickness and narrow gap Submerged Arc Welding. Narrow gap Gas Metal Arc Welding and Electron Beam Welding is applied to turbine diaphragm. To improve the resistance of solid particle erosion of turbine blade and nozzle partition, HVOF spray technology and boriding process has been applied.

  • PDF

A DEVELOPMENT OF MATHEMATICAL MODELS FOR PREDICTION OF OPTIMAL WELD BEAD GEOMETRY FOR GMA WELDING (GMA 용접에 최적의 용접비드 형상을 예측하기 위한 수학적 모델 개발)

  • 김일수
    • Journal of Welding and Joining
    • /
    • v.15 no.3
    • /
    • pp.118-127
    • /
    • 1997
  • With the trend towards welding automation and robotization, mathematical models for studying the influence of various variables on the weld bead geometry in gas metal arc (GMA) welding process are required. Partial penetration, single-pass bead-on-plate welds using the GMA welding process were fabricated in 12mm mild steel plates employed four different process variables. Experimental results has been designed to investigate the analytical and empirical formulae, and develop mathematical equations for understanding the relationship between process variables and weld bead geometry. The relationships can be usefully employed not only for open loop process control, but also for adaptive control provided that dynamic sensing of process output is performed.

  • PDF