• 제목/요약/키워드: Gas lift

검색결과 127건 처리시간 0.026초

개질기용 예혼합 버너의 화염형태 및 안정성 특성 (Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers)

  • 이필형;박봉일;조순혜;황상순
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

합성가스를 이용한 역확산버너의 연소 및 복사열전달 특성, Part 1 : 공기-연료 연소 (Radiation Heat Flux and Combustion Characteristics of Inverse Diffusion Flame Burner Using Synthesis Gas, Part 1 : Air-Fuel Combustion)

  • 이필형;박창수;이재영;박봉일;황상순;이성호;안용수
    • 한국연소학회지
    • /
    • 제14권4호
    • /
    • pp.33-40
    • /
    • 2009
  • Waste Thermal Pyrolysis Melting process was proposed and has been studied in order to prevent air pollution by dioxin and fly ash generated from combustion process for disposal of waste. In this study, applicability as the fuel of diffusion burner of synthesis gas formed from Waste Thermal Pyrolysis process was addressed. Results showed that there is no big difference in the flame shape between MNDF and SNDF, and lift off was detected in MIDF but flame is more stable in SIDF which contains hydrogen with high combustion velocity as flow rate in first nozzle is increased. And radiation heat flux in inverse diffusion flame of synthesis gas was found to be more by 1.5 times than that in inverse diffusion flame of methane because of higher mole fraction of $CO_2$ with high emissivity in product gas.

  • PDF

개질기용 Anode Off Gas의 연소특성에 관한 연구 (Combustion Characteristic of Anode Off Gas for Fuel Cell Reformer)

  • 이필형;황상순
    • 한국연소학회지
    • /
    • 제17권4호
    • /
    • pp.5-10
    • /
    • 2012
  • The reformer system is a chemical device that drives the conversion of hydrocarbon to hydrogen rich gas under high temperature environment($600-1,000^{\circ}C$). Generally, NG(Natural Gas) or AOG(Anode Off Gas) is used as fuel of fuel cell reformer combustion system. The experimental study to analyze the combustion characteristics of a premixed ceramic burner used for 0.5-1.0 kW fuel cell reformer was performed. Ceramic burner experiments using NG and AOG were carried out to investigate the flame stability characteristics by heating capacity, equivalence ratio and different fuels respectively. The results show that surface flames can be classified into green, red, blue and lift-off flames as the equivalence ratio of methane-air mixture decreases. And the stable flames can be established using NG and AOG as reformer fuel in the perforated ceramic burner. In particular, the blue flame is found to be stable at a lean equivalence ratio under different mixture conditions of NG and AOG for the 0.5 to 1.0 kW fuel cell system power range. NOx emission is under 60 ppm between 0.70 to 0.78 of equivalence ratio and CO emission is under 50 ppm between 0.70 to 0.84 of equivalence ratio.

개질기용 예혼합 연소장치의 연소특성 연구 (Combustion Characteristics of Premixed Burner for Fuel Reformer)

  • 이필형;이재영;한상석;박창수;황상순
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2181-2185
    • /
    • 2008
  • Fuel processing systems which convert HC fuel into $H_2$ rich gas (such as stream reforming, partial oxidation, auto-thermal reforming) need high temperature environment($600-1000^{\circ}C$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1-5kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural & anode off gas as reformer fuel. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity.

  • PDF

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화 (Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect)

  • 정동건;이준엽;권진범;맹보희;김영삼;양이준;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

하이브리드용 가솔린엔진의 EGR을 통한 연비향상에 관한 연구 (Study on Fuel Consumption Improvement in SI Engine with EGR for Hybrid Electric Vehicle)

  • 박철웅;최영;김창기
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.128-135
    • /
    • 2008
  • EGR(exhaust gas recirculation) is considered as a most effective method to reduce the NOx emissions. But high EGR tolerance is always pursued not only for its advantages of the pumping loss reduction and fuel economy benefit in Gasoline-Hybrid engine. However, the occurrence of excessive cyclic variation with high EGR normally prevents substantial fuel economy improvements from being achieved in practice. Therefore, the optimum EGR rate should be carefully determined in order to achieve low fuel consumption and low exhaust emission. In this study, 2 liters gasoline engine with E-EGR system was used to investigate the effects of EGR on fuel efficiency, combustion stability, engine performance and exhaust emissions. With optimal EGR rates, the fuel consumption was improved by 4%. This improvement was achieved while a reduction in NOx emissions of 75% was accomplished. Increase of EGR gas temperature causes the charge air temperature to affect the knock phenomenon and moreover, the EGR valve lift changes for the same control signal.

단일전극을 가진 마이크로 가스센서의 제작 및 특성 (Characteristics and Fabrication of Micro Gas Sensor with Single Electrode)

  • 송갑득;방영일;이상문;이윤수;최낙진;주병수;서무교;허증수;이덕동
    • 센서학회지
    • /
    • 제11권6호
    • /
    • pp.350-357
    • /
    • 2002
  • 센서의 안정도와 감도를 개선시킬 수 있는 단일전극을 가진 열선형 마이크로 가스센서를 제작하였다. 일반적으로, 금속산화물 반도체를 이용한 가스센서는 히터전극과 감지전극의 두 개의 전극을 가지고 있다. 제작된 센서는 히터전극위에 감지물질을 형성하여 단일 전극을 가지는 구조를 가지고 있다. 히터와 감지전극으로 사용되는 Pt는 glass 기판위에 스퍼터링법으로 형성하였으며 $SnO_2$ 감지물질은 제작된 Pt 전극위에 열증착시켜 형성하였다. $SnO_2$ 막은 lift-off 공정을 이용해서 패턴을 형성하고 1시간 동안 산소분위기에서 열산화하였다. 제작된 소자의 크기는 $1.9{\times}2.1\;mm^2$이다. CO 가스에 대한 감지특성을 조사한 결과 1,000 ppm에 대해 100 mV의 출력변화를 나타내었으며, 넓은 농도범위($0{\sim}10,000\;ppm$)에서 선형적인 전압출력을 나타내었다. 또한 가스 반응 전과 반응 후의 전압출력을 비교해 볼 때, 1% 이내의 편차를 나타내는 우수한 회복성을 나타내었다.

슬릿버너에서 형상변화가 연소특성 및 배기배출물에 미치는 영향 (The study of combustion characteristics and emissions with the variation of design factor on slit gas burner)

  • 김태우;조승완;장영준;전충환
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.314-319
    • /
    • 2005
  • In this study, the combustion characteristics were investigated with the variation of design factors on multiple slit gas burner. The design factors consist of slit height, width, spacing, and inner length. The combustion characteristics were made analysis of the CO emission and NOx emission by using CO analyzer and NOx analyzer. The lower perimeter to area and the narrow spacing extends the lift-flame limit. The CO emission increases with the increasing perimeter to area ratio at the same condition. The NOx emission is found to be less significant with the port perimeter to area ratio. The flame interference might highly depend on the spacing and port perimeter to area ratio, and it also affects the burner performance.

  • PDF

판 스프링 패드 공기베어링 성능에 관한 실험적 연구 (An Experimental Study on Performances of Leaf Spring Pad Air Bearing)

  • 이희락;제양규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.94-99
    • /
    • 2003
  • As the rotating speed of rotors is increased, the instability and power loss become serious problems. Gas bearings are introduced as a good solution to those problems. But in the development of gas bearings, high load capacity and high damping force to vibrations are required. In this study a new air bearing using leaf spring pad is introduced to improve load capacity and damping force. The experimental results of the leaf spring pad air bearings show high load capacity and high damping forces. And the results show that leaf spring pad air bearings can be simultaneously acted as radial and thrust bearings

  • PDF