• Title/Summary/Keyword: Gas flow sensor

Search Result 134, Processing Time 0.026 seconds

Fabrication of DMMP gas sensor based on $SnO_2$ (산화주석을 기반으로 한 DMMP 가스센서 제작)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Baek, Won-Woo;Lee, Woo-Suk;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.942-945
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas was dimethylmethylphosphonate($C_3H_9O_3P$, DMMP) that is simulant gas of nerve gas. Sensing material was $SnO_2$ added ${\alpha}-Al_2O_3$ with $4{\sim}20wt.%$ and was physically mixed. And then it was deposited by screen printing method on alumina substrate. Sensor device was consisted of sensing electrode with interdigit(IDT) type in front and heater in back side. Total size of device was $7{\times}10{\times}0.6mm^3$. Crystallite size of fabricated $SnO_2$ were characterized by X-ray diffraction(XRD, Rigaku) and morphology of the $SnO_2$ powders was observed by a scanning electron microscope(SEM, Hitachi). Fabricated sensor was measured as flow type and sensor resistance change was monitored real time using LabVIEW program. The best conditions as added $Al_2O_3$ amounts and operating temperature changes were 4wt.% and $300^{\circ}C$ in DMMP 0.5ppm, respectively. The sensitivity was over 75%. Response and recovery times were about 1 and 3 min., respectively. Repetition measurement was very good with ${\pm}3%$ in full scale.

  • PDF

Fabrication on Microheater Flow Sensors Using Membrane Structure and Its Characteristics (맴브레인 구조를 이용한 미세발열체형 유량센서의 제작과 그 특성)

  • 정귀상;노상수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.996-1000
    • /
    • 1998
  • This paper describes the characteristics of Pt microheater using aluminum oxide films as medium layer and its application to flow sensors. Pt microheater have heating temperature of $390^{\circ}C$ at heating power of 1.2 W. Output voltages of flow sensors which were fabricated by integrating sensing-part with heating-part increase as gas flow rate and its conductivity increase. At $O_2$ flow rate of 2000 sccm, heating power of 0.8 W, output voltage of flow sensor is 101 mV under bridge-applied voltage of 5 V.

  • PDF

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF

Effect of Flow Field and Detection Volume in the Optical Particle Sensor on the Detection Efficiency (광학입자센서 내 유동장과 측정영역이 측정효율에 미치는 영향)

  • Kim, Young-Gil;Jeon, Ki-Soo;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3162-3167
    • /
    • 2007
  • The OPS (Optical Particle Sensor) using light scattering from the particles (real-time measurement without physical contact to the particles) can be used for cleanroom or atmospheric environment monitoring. For particles smaller than 300 nm, the detection efficiency becomes lower as scattered light decreases with particle size. To obtain higher detection efficiency with small particles, the flow field in particle chamber and the detection volume should be designed optimally to achieve maximum scattered light from the particles. In this study, a commercial computational fluid dynamics software FLUENT was used to simulate the gas flow field and particle trajectories with various optical chamber designs for 300 nm PSL particle. For estimation of laser viewing volume, we used a commercial computational optical design program ZEMAX. The results will be a great help in the development of OPS which can measure small particles with higher detection efficiency.

  • PDF

Initial Study of a Wire Mesh Tomography Sensor for Liquid/Gas Component Investigation

  • Rahiman, M.H.F.;Siow, L.T.;Rahim, R.A.;Zakaria, Z.;Ang, Vernoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2205-2210
    • /
    • 2015
  • Experimental studies have been carried out to study the principle operation of the conductive type wire-mesh tomography sensor and analyse the wire-mesh tomography sensor for the liquid/gas two-phase flow interface and void fraction distribution in a process column. The measurement of the two-phase flows in the process column is based on the cross-sectional local instantaneous conductivity. The sensor consists of two planes of parallel electrode wires with 16 electrodes each and was placed orthogonally with each plane. The sensor electrode wires were made of tinned copper wire with an outer diameter of 0.91 mm which stretched over the sensor fixture. Therefore, this result in the mesh grid size with 5.53×5.53mm2. The wire-mesh sensor was tested in a horizontal liquid/gas two-phase flows process column with nominal diameter of 95.6 mm and the sampling frequency of 5882.3529 Hz. The tomogram results show that the wire-mesh tomography provides significant results to represent the void fraction distribution in the process column and estimation error was found in the liquid/gas interface level

Thin Film Gas Sensors Based on Tin Oxide for Acetonitrile (산화주석 기반의 아세토니트릴 검지용 박막형 가스센서)

  • Choi, Nak-Jin;Ban, Tae-Hyun;Kwak, Jun-Hyuk;Lim, Yeon-Tae;Joo, Byung-Su;Kim, Jae-Chang;Huh, Jeung-Soo;Lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.218-223
    • /
    • 2004
  • Thin film gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is acetonitrile ($CH_{3}CN$) that is simulant gas of blood agent gas. Sensing materials are $SnO_{2}$, $SnO_{2}$/Pt, and (Sn/Pt)oxidation with thickness from $1000{\AA}$ to $3000{\AA}$. Sensor was consisted of sensing electrode with interdigit (IDT) type in front side and a heater in back side. Its dimension was $7{\times}10{\times}0.6mm^{3}$. Fabricated sensor was measured as flow type and monitored real time using PC. The optimal sensing material for $CH_{3}CN$ was {Sn($3000{\AA}$)/Pt($30{\AA}$)}oxidation and its sensitivity and operating temperature were 30%, $300^{\circ}C$ in $CH_{3}CN$ 3 ppm.

fabrication of DMMP Thick Film Gas Sensor Based on SnO2 (산화주석을 기반으로 한 DMMP 후막가스센서 제작)

  • 최낙진;반태현;곽준혁;백원우;김재창;허증수;이덕동
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1217-1223
    • /
    • 2003
  • Nerve gas sensor based on tin oxide was fabricated and its characteristics were examined. Target gas is dimethyl methyl phosphonate(C$_3$ $H_{9}$ $O_3$P, DMMP) that is simulant gas of nerve gas. Sensing materials were Sn $O_2$ added a-Al$_2$ $O_3$ with 0∼20wt.% and were physically mixed each material. They were deposited by screen printing method on alumina substrate. The sensor device was consisted of sensing electrode with interdigit(IDT) type in front and a heater in back side. Total size of device was 7${\times}$10${\times}$0.6㎣. Crystallite size & phase identification and morphology of fabricated Sn $O_2$ powders were analyzed by X-ray diffraction and by a scanning electron microscope, respectively. Fabricated sensor was measured as flow type and resistance change of sensing material was monitored as real time using LabVIEW program. The best sensitivity was 75% at adding 4wt.% $\alpha$-Al$_2$ $O_3$, operating temperature 30$0^{\circ}C$ to DMMP 0.5ppm. Response and recovery time were about 1 and 3min., respectively. Repetition measurement was very good with $\pm$3% in full scale.TEX>$\pm$3% in full scale.

Enhancement of Oxygen Transfer Efficiency Using Vibrating lung Assist Device in In-Vitro Fluid Flow (In-vitro 유동장에서 진동형 폐 보조장치를 이용한 산소전달 효율의 향상)

  • 권대규;김기범;이삼철;정경락;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1332-1335
    • /
    • 2003
  • This paper presents the enhancement of oxygen transfer efficiency using the vibrating intravascular lung assist device (VIVLAD) in in-vitro experiments for patients having chronic respiratory problems. The test section was a cylinder duct with the inner diameter of 30 mm. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-vibrator, a function generator. and a power amplifier. The direction of vibration was radial to the fluid flow. Gas flow rates of up to 6 l/min through the 120-cm-Jong hollow fibers have been achieved by exciting a piezo-vibrator. The output of PVDF sensor were investigated by various frequencies in VIVLAD. The experimental results showed that VIVLAD would be enhance oxygen transfer efficiency.

  • PDF

Fabrication and characteristics of micro-machined thermoelectric flow sensor (실리콘 미세 가공을 이용한 열전형 미소유량센서 제작 및 특성)

  • Lee, Young-Hwa;Roh, Sung-Cheoul;Na, Pil-Sun;Kim, Kook-Jin;Lee, Kwang-Chul;Choi, Yong-Moon;Park, Se-Il;Ihm, Young-Eon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • A thermoelectric flow sensor for small quantity of gas flow rate was fabricated using silicon wafer semiconductor process and bulk micromachining technology. Evanohm R alloy heater and chromel-constantan thermocouples were used as a generation heat unit and sensing parts, respectively. The heater and thermocouples are thermally isolated on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ laminated membrane. The characteristics of this sensor were observed in the flow rate range from 0.2 slm to 1.0 slm and the heater power from 0.72 mW to 5.63 mW. The results showed that the sensitivities $(({\partial}({\Delta}V)/{\partial}(\dot{q}));{\;}{\Delta}V$ : voltage difference, $\dot{q}$ : flow rate) were increased in accordance with heater power rise and decreasing of flow rate.

기포탑반응기에서 가스 SENSOR 재료인 PZT 분말의 합성(I)

  • 현성호;김정환
    • Fire Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.40-51
    • /
    • 1996
  • A synthesis process for PZT powder using NH$_3$ gas as a precipitator in a bubble column reactor was experimentally successful in develope a production process of Piezoelectric ceramic PZT powder. Also as a reaction by coprecipitation, the crystalized PZT ceramic powder at the condition of over pH 9 could be attained. The time needed for reaction on the condition of NH$_3$ gas flow rate=0.5 1/min, Ar gas flow rate=2.0 1/min, Feed flow rate=2.33 ml /sec was less than five minutes, so it could synthesize PZT powder for such a few moments. And the synthesized PZT powder was 0.17${\mu}{\textrm}{m}$ in diameter on an average.

  • PDF