• Title/Summary/Keyword: Gas flow analysis

Search Result 1,672, Processing Time 0.028 seconds

The Numerical multi-phase analysis of ventilating flow around vehicle (환기 공동을 이용한 수중운동체 주위의 초월 공동 다상유동장 해석)

  • Park, Wam-Gyu;Kim, Dong-Hyun;Jung, Chul-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.252-255
    • /
    • 2011
  • Supercavitating torpedo uses the supercavitation technology that can reduce dramatically the skin friction drag. The present work focuses on the numerical analysis of the non-condensable cavitating flow around the supercavitating torpedo. The governing equations are the Navier-Stokes equations based on the homogeneous mixture model. The cavitation model uses a new cavitation model which was developed by Merkle(2006). The multiphase flow solver uses an implicit preconditioning scheme in curvilinear coordinates. The ventilated cavitation is implemented by non-condensable gas injection on backward of cavitator cone and the base of the torpedo. The comparison between the without and with ventilated cavitation numerical results, with ventilated cavitation using non-condensable gas injection is more efficient method.

  • PDF

Design of Cell Frame Structure of Unit Cell for Molten Carbonate Fuel Cell Using CFD Analysis (CFD를 통한 용융탄산염 연료전지 단위전지용 셀 프레임 구조 설계)

  • LEE, SUNG-JOO;LIM, CHI-YOUNG;LEE, CHANG-WHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.56-63
    • /
    • 2018
  • In this study, a $100cm^2$ cell frame for a molten carbonate fuel cell was designed using CFD analysis. Electrochemical reactions, gas flow, and the heat transfer in $100cm^2$ cell frame were modeled using COMSOL Multiphysics. Two design variables such as the height of the cell frame and the length of the gas input area were determined to obtain minimized temperature distribution and uniform gas distribution. With two design parameter such as height of the cell frame and the length of the gas flow channel, the temperature difference in the cell fame was decreased to $5^{\circ}C$ and the gas uniformity in the flow channel were achieved.

Development of 3D DMFC Model for Flow Field Design (직접 메탄올 연료전지 유로 설계를 위한 3차원 모델 개발)

  • Kim, Hongseong;Danilov, Valeri A.;Lim, Jongkoo;Moon, Il
    • Korean Chemical Engineering Research
    • /
    • v.45 no.1
    • /
    • pp.93-102
    • /
    • 2007
  • The objective of this study is to develop a 3D DMFC model for modeling gas evolution and flow patterns to design optimal flow field for gas management. The gas management on the anode side is an important issue in DMFC design and it greatly influences the performance of the fuel cell. The flow field is tightly related to gas management and distribution. Since experiment for the optimal design of various flow fields is difficult and expensive due to high bipolar plate cost, computational fluid dynamics (CFD) is implemented to solve the problem. A two-fluid model was developed for CFD based flow field design. The CFD analysis is used to visualize and to analyze the flow pattern and to reduce the number of experiments. Case studies of typical flow field designs such as serpentine, zigzag, parallel and semi-serpentine type illustrate applications of the model. This study presents simulation results of velocity, pressure, methanol mole fraction and gas content distribution. The suggested model is verified to be useful for the optimal flow field design.

Numerical Model for Stack Gas Diffusion in Terrain Containing Buildings - Application of Numerical Model to a Cubical Building and a Ridge Terrain -

  • Sada, Koichi;Michioka, Takenobu;Ichikawa, Yoichi
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.1-13
    • /
    • 2008
  • A numerical simulation method has been developed to predict atmospheric flow and stack gas diffusion using a calculation domain of several km around a stack under complex terrain conditions containing buildings. The turbulence closure technique using a modified k-$\varepsilon$-type model under a non hydrostatic assumption was used for the flow calculation, and some of the calculation grids near the ground were treated as buildings using a terrain-following coordinate system. Stack gas diffusion was predicted using the Lagrangian particle model, that is, the stack gas was represented by the trajectories of released particles. The numerical model was applied separately to the flow and stack gas diffusion around a cubical building and to a two-dimensional ridge in this study, before being applied to an actual terrain containing buildings in our next study. The calculated flow and stack gas diffusion results were compared with those obtained by wind tunnel experiments, and the features of flow and stack gas diffusion, such as the increase in turbulent kinetic energy and the plume spreads of the stack gas behind the building and ridge, were reproduced by both calculations and wind tunnel experiments. Furthermore, the calculated profiles of the mean velocity, turbulent kinetic energy and concentration of the stack gas around the cubical building and the ridge showed good agreement with those of wind tunnel experiments.

Prediction of Vehicle Exhaust Noise using 3-Dimensional CFD Analysis (3차원 유동해석을 통한 차량 배기소음 예측에 관한 연구)

  • 진봉용;이상호;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.148-156
    • /
    • 2001
  • Computational Fluid Dynamics (CFD) analysis was carried out to investigate exhaust gas flow and acoustic characteristics in the exhaust system of a passenger car. Transient 3-dimensional flow field in the front and rear mufflers was simulated by CFD and far-field sound pressure was modeled by a simple monopole source method. Engine performance simulation was also performed to obtain the boundary condition of instantaneous fluid flow variation at the inlet of the exhaust system. Detailed exhaust gas flow characteristics such as velocity and pressure distribution inside the mufflers were presented and the pulsating pressure amplitude was compared at several positions in the exhaust system to deduce sound pressure level. The present method of the acoustic analysis coupled with CFD techniques would be very effective for the prediction of sound noise from vehicle exhaust systems although the effects of the inlet boundary condition and heat transfer on the accuracy of the prediction have to be validated through further studies.

  • PDF

Performance Analysis of Moving Bed Heat Exchanger of Solid Particles in a Vertical Pipe (고체입자 이동층을 이용한 수직 전열관 열교환기의 성능해석)

  • Park, Sang-Il;Choe, Gyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2916-2923
    • /
    • 1996
  • A numerical analysis of the moving bed heat exchanger of solid particles inside the vertical pipe was performed using finite difference method. Also, the theoretical solutions were obtained for comparison when the wall heat flux or the wall temperature was assumed constant. The comparison showed that their results agreed well each other. The moving bed heat exchanger was classified as countercurrent-flow, parallel-flow, and cross-flow types according to the gas flow direction. For each type, the thermal efficiency of heat exchanger was calculated as a function of non-dimensional parameters such as the characteristic length of heat exchanger, Biot number and the ratio of thermal capacities of gas and solid particles.

Numerical Analysis of Hypersonic Shock-Shock Interaction using AUSMPW+ Scheme and Gas Reaction Models (AUSMPW+ 수치기법과 반응기체 모델을 이용한 극초음속 충격파-충격파 상호작용 수치해석)

  • Lee Joon-Ho;Kim Chongam;Rho Oh-Hyun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.29-34
    • /
    • 1999
  • A two-dimensional Navier-Stokes code based on AUSMPW+ scheme has been developed to simulate the hypersonic flowfield of hypersonic shock-shock interaction. AUSMPW+ scheme is a new hybrid flux splitting scheme, which is improved by introducing pressure-based weight functions to eliminate the typical drawbacks of AUSM-type schemes, such as non-monotone pressure solutions. To study the real gas effects, three different gas models are taken into account in this paper: perfect gas, equilibrium flow and nonequilibrium flow. It has been investigated how each gas model influences on the peak surface loading, such as wall pressure and wall heat transfer, and unsteady flowfield structure in the region of shock-shock interaction. With the results, the value of peak pressure is not sensitive to the real gas effects nor to the wall catalyticity. However, the value of peak heat transfer rates is affected by the real gas effects and the wall catalyticity. The structure of the flowfield also changes drastically in the presence of real gas effects.

  • PDF

Experimental and Numerical Analysis of Heat Transfer Phenomena in a Sensor Tube of a Mass Flow Controller (질량 유량계 센서관에서의 열전달 현상에 대한 수치적 해석 및 실험적 연구)

  • Jang, Seok-Pil;Kim, Sung-Jin;Choi, Do-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.154-161
    • /
    • 2000
  • As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution.

  • PDF

Development of a 9as-liquid two-phase flowmeter using double orifice plates (2중판 오리피스를 이용한 기액 2상유량계의 개발)

  • 이상천;이상무;남상철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.619-629
    • /
    • 1998
  • An experimental work was conducted to investigate a feasibility of simultaneous measurement of gas-liquid two-phase flowrates with double orifice plates using air and water. The tests were carried out under the atmospheric pressure and at the ambient temperature using two different tube sizes. Qualities of an air-water flow in the present study have values less than 0.1 and thus the mixed flow showed bubbly, plug, slug flow regimes. The probability density function (PDF) and the power spectral density function (PSDF) of the instantaneous pressure drop traces for the flow regimes were obtained. It is found that some distinctive features exist in the distribution of these functions, depending upon the two-phase flow pattern. The time-averaged value of the instantaneous pressure drop increases with increasing gas and liquid flowrates, showing a single-valued function for the total mass flowrate and the quality. It is also found that the two-phase discharge coefficient exhibits a consistent trend for variation of dimensionless parameters such as the superficial velocity ratio and the gas Reynolds number. The results indicate that simultaneous measurement of two-phase flowrate may be possible based upon a statistical analysis of the instantaneous pressure drop curves monitored using double orifice plates.

  • PDF

Production Data Analysis to Predict Production Performance of Horizontal Well in a Hydraulically Fractured CBM Reservoir (수압파쇄된 CBM 저류층에서 수평정의 생산 거동예측을 위한 생산자료 분석)

  • Kim, Young-Min;Park, Jin-Young;Han, Jeong-Min;Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.1-11
    • /
    • 2016
  • Production data from hydraulically fractured well in coalbed methane (CBM) reservoirs was analyzed using decl ine curve analysis (DCA), flow regime analysis, and flowing material balance to forecast the production performance and to determine estimated ultimate recovery (EUR) and timing for applying the DCA. To generate synthetic production data, reservoir models were built based on the CBM propertie of the Appalachian Basin, USA. Production data analysis shows that the transient flow (TF) occurs for 6~16 years and then the boundary dominated flow (BDF) was reached. In the TF period, it is impossible to forecast the production performance due to the significant errors between predicted data and synthetic data. The prediction can be conducted using the production data of more than a year after reached BDF with EUR error of approximately 5%.