• Title/Summary/Keyword: Gas adsorption efficiency

Search Result 125, Processing Time 0.03 seconds

Quantification of Volatile Organic Compounds in Gas Sample Using Headspace Solid-Phase Microextraction (고상 미세 추출법을 이용한 가스시료 중 휘발성유기화합물의 정량 분석)

  • Kim, Jae Hyuck;Kim, Hyunook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.906-917
    • /
    • 2013
  • The purpose of this study is to quantify volatile organic compounds (VOCs) in gas sample using headspace solid-phase microextraction (HS-SPME) coupled to GC analysis. The optimal HS-SPME conditions was CAR/PDMS fiber and 30 min absorprion time for the analysis of various VOCs. In optimal conditions, 80 VOCs could be detected within 1 ppbv and even less than 0.0005 ppbv especially in the case of BTEX. However, fiber reproducibility on adsorption efficiency was 1~9.2% (between the same fiber) and 5.9~13.5% (between the other fiber). We successfully determined 35 VOCs in landfill gas with this method and found that VOCs of high concentration are emitting from vent pipe of closed/open landfill site under the HS-SPME conditions. This method may apply to VOCs/odor determination from various atmospheric environmental samples as well as landfills.

Biofilter Model for Robust Biofilter Design: 2. Dynamic Biofilter Model (강인한 바이오필터설계를 위한 바이오필터모델: 2. 동적 바이오필터모델)

  • Lee, Eun Ju;Song, Hae Jin;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.155-161
    • /
    • 2012
  • A dynamic biofilter model was suggested to integrate the effect of biofilter-medium adsorption capacity on the removal efficiency of volatile organic compound (VOC) contained in waste air. In particular, the suggested biofilter model is composed of four components such as biofilm, gas phase, sorption volume and adsorption phase and is capable of predicting the unsteady behavior of biofilter-operation. The process-lumping model previously suggested was limited in the application for the treatment of waste air since it was derived under the assumption that the adsorbed amount of VOC equilibrated with biofilter-media would be proportional to the concentration of dissolved VOC in the sorption volume of biofilter-media. Therefore a Freundlich adsorption isotherm was integrated into a robust biofilter process-lumping model applicable to a wide range of VOC concentration. The values of model parameters related to biofilter-medium adsorption were obtained from the dynamic adsorption column experiments in the preceding article and literature survey. Furthermore a separate biofilter experiment was conducted to treat waste air containing ethanol and the experimental result was compared with the model predictions with various values of Thiele modulus (${\phi}$). The obtained value of Thiele modulus (${\phi}$) was close to 0.03.

Cesium Adsorption Properties of Activated Carbon with Oxygen Functional Groups Introduced by Ozonation Treatment (오존 처리에 의해 산소 작용기가 도입된 활성탄소의 세슘 흡착 특성)

  • Eunseon Chae;Chung Gi Min;Chaehun Lim;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Cesium is a potential toxic contaminant due to its high solubility, which allows it to easily penetrate the human body and potentially induce cancer or DNA mutations. In this study, oxygen functional groups were introduced on activated carbons (ACs) by ozone treatment to enhance the cesium adsorption capacity. As the ozone treatment time increased, the oxygen content on the ACs surface increased. Subsequently, the electrostatic interaction between ACs and cesium enhanced, resulting in higher cesium ion adsorption efficiency across all samples. In particular, the sample treated with ozone for 7 minutes at an internal ozone concentration of 50000 ppm had roughly 12% greater oxygen functional group content and the highest cesium removal effectiveness (97.6%). Meanwhile, samples treated for 5 minutes showed a 0.3% cesium removal rate difference compared to those treated for 7 minutes, which was caused by the surface chemical similarity of the two samples due to the reactive characteristics of ozone gas. However, the cesium adsorption performance of ozonated activated carbon seems to be mainly influenced by the amount of oxygen functional groups introduced to the surface, although the specific surface area and pore structure of the activated carbon are also important.

A Study of Alkali Metal Vapor Adsorption Behavior by Using Pressurized Reactor (가압반응기를 이용한 알칼리금속증기 흡착특성에 관한 연구)

  • 전수한;최병철;김형택
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.114-121
    • /
    • 2002
  • Alkali metal compounds existed in original coal or sorbents are exhausted as vapor or small particle at the outlet of combustor when operating PFBC power plant. These compounds can be removed with dust removal equipment, but total generation efficiency will be decreased because of lower operating temperature of dust removal equipment. Alkali metal contained in vapor phase is initially deposited onto turbine blade results in serious corrosion. The concentration of alkali vapor in the PFBC flue gas is 20∼40 ppm which is dependent on mineral characteristics and composition as well as operating condition of PFBC. However, the allowance limit of alkali metal vapor is assigned as less than 50 ppb for gas turbine when coal or oil is used as fuel. Therefore, alkali metal vapor in PFBC or IGCC process should be removed by solid sorbents to prevent corrosion of turbine blade and improve plant efficiency. In the present investigation, powder of Bauxite, Kaolinite and Limestone is used in the preparation of cylinder-type pellet which is inserted into the pressurized alkali removal reactor for the alkali absorption experiment. Experimental results showed that the alkali removal efficiency in the order of Bauxite, Kaolinite and Limestone. Alkali vapor removal efficiency is related with reaction temperature, porosity of pellet and alkali vapor concentration of flue gas.

Optimal Operation of Gas Engine for Biogas Plant in Sewage Treatment Plant (하수처리장 바이오가스 플랜트의 가스엔진 최적 운영 방안)

  • Kim, Gill Jung;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.2
    • /
    • pp.18-35
    • /
    • 2019
  • The Korea District Heating Corporation operates a gas engine generator with a capacity of $4500m^3 /day$ of biogas generated from the sewage treatment plant of the Nanji Water Recycling Center and 1,500 kW. However, the actual operation experience of the biogas power plant is insufficient, and due to lack of accumulated technology and know-how, frequent breakdown and stoppage of the gas engine causes a lot of economic loss. Therefore, it is necessary to prepare technical fundamental measures for stable operation of the power plant In this study, a series of process problems of the gas engine plant using the biogas generated in the sewage treatment plant of the Nanji Water Recovery Center were identified and the optimization of the actual operation was made by minimizing the problems in each step. In order to purify the gas, which is the main cause of the failure stop, the conditions for establishing the quality standard of the adsorption capacity of the activated carbon were established through the analysis of the components and the adsorption test for the active carbon being used at present. In addition, the system was applied to actual operation by applying standards for replacement cycle of activated carbon to minimize impurities, strengthening measurement period of hydrogen sulfide, localization of activated carbon, and strengthening and improving the operation standards of the plant. As a result, the operating performance of gas engine # 1 was increased by 530% and the operation of the second engine was increased by 250%. In addition, improvement of vent line equipment has reduced work process and increased normal operation time and operation rate. In terms of economic efficiency, it also showed a sales increase of KRW 77,000 / year. By applying the strengthening and improvement measures of operating standards, it is possible to reduce the stoppage of the biogas plant, increase the utilization rate, It is judged to be an operational plan.

Retention Behaviors of Natural Gas Components on a Single Column by Gas Chromatography (기체 크로마토그래피에 의한 단일 컬럼상에서 천연가스 성분의 머무름 거동)

  • Choi, Yong-Wook;Choe, Kun-Hyung;Lee, Dai-Woon
    • Analytical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.329-338
    • /
    • 1994
  • The retention behaviors of natural gas components were studied on a single column by gas chromatography. The dead time, $t_0$ was obtained by using extrapolation of homologous series to determine capacity factors. The plots of retention data for homologous series and carbon number at different temperatures were shown to converge into a single point, which point was determined as a dead time. The results of the effect of temperature on the column efficiency for n-butane exhibited the plate number, N incerased with temperature, but the resolution among the fast eluted components decreased. The adsorption enthalpy (${\Delta}H^0{_{ads}}$) for each component on 28% DC 200 stationary phase was determined, and in order to investigate the retention behaviors of natural gas components the regression analysis of log $t_R$, log k' and log ${\alpha}$ vs. van der Waals volume(Vw), molecular connectivity index(X) and hydrophobic fragmental constant(f) were carred out. Good correlation was found between log k' vs. Vw, and log k' vs. f. The correlations between the physical properties of natural gas and the physical parameters were investigated by the linear regression analysis. The relationships between Vw vs. molecular weight and heating value(${\Delta}H_{comb}$), X vs. boiling point, and f vs. molecular weight, boiling point and heating value exhibited the high correlation coefficient more than 0.99. Using the regression equation between the heating value of natural gas and Vw the predicted heating values from $C_6$ to $C_{10}$ showed good agreement with those reported in the literature within 0.2% relative error.

  • PDF

Effect of pH, Saturated Oxygen, and Back-flushing Media in Hybrid Water Treatment of Tubular Ceramic MF and Photocatalyst-loaded PES Beads (관형 세라믹 정밀여과와 광촉매 첨가 PES 구의 혼성수처리에서 pH 및 포화산소, 역세척 매체의 영향)

  • Hong, Sung Taek;Park, Jin Yong
    • Membrane Journal
    • /
    • v.24 no.2
    • /
    • pp.123-135
    • /
    • 2014
  • The effects of pH, saturated oxygen, and back-flushing media were investigated in hybrid process of tubular ceramic microfiltration and $TiO_2$ photocatalyst-loaded PES (polyethersulfone) beads for advanced drinking water treatment, and compared results of water, nitrogen, or oxygen back-flushing in the viewpoints of membrane fouling resistance ($R_f$), permeate flux (J) and total treated water ($V_T$). $R_f$ decreased, and J and $V_T$ increased as decreasing pH. Turbidity treatment efficiencies were similar at water or nitrogen back-flushing independent of pH, but DOM (dissolved organic matter) treatment efficiency did not have a trend at water back-flushing. $R_f$ at NBF (no back-flushing) with SO (saturated oxygen) was the lower than that at NBF without SO. Also, the DOM treatment efficiency at NBF with SO was the lower than that at NBF without SO. It happened because OH radicals produced by reaction of SO and photocatalyst could dilute with water inside the module. The DOM treatment efficiency of gas back-flushing showed the larger than that of water back-flushing at back-flushig period 10 min. It proved that the adsorption or photo-oxidation of PES beads could be activated by the more effective bead-cleaning of gas back-flushing than water back-flushing.

Removal Efficiency of Organic Iodide on Silver Ion-Exchanged Yeolite and TEDA-AC at High Temperature Process (고온공정에서 은교환 제올라이트 및 TEDA 첨착활성탄의 유기요오드 제거성능)

  • 최병선;박근일;김성훈;윤주현;배윤영;지성균;양호연;유승곤
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2003
  • Adsorption and desorption characteristics of methyl iodide at high temperature conditions up to 25$0^{\circ}C$ by TEDA-impregnated activated carbon and silver-ion exchanged zeolite(AgX-10), which are used for radioiodine retention in nuclear facility, were experimentally evaluated. In the range of temperature from 3$0^{\circ}C$ to 25$0^{\circ}C$, the adsorption capacity of base activated carbon decreased sharply with increasing temperature but that of TEDA-impregnated activated carbon showed higher value even at high temperature ranges. Especially, the residual amount of methyl iodide after desorption on TEDA-AC represented 30% lower value than that on AgX-10. However, it can be used as an adsorbent for the removal of methyl iodide up to 15$0^{\circ}C$ if it is preventing explosion by Ignition. The breakthrough curves of methyl iodide in the fixed bed packed with AgX-10 uP to 40$0^{\circ}C$ were compared upon the effects of bed temperatures, bed depth and input concentration of methyl iodide. Removal mechanism of methyl iodide on AgX-10 was proposed, based on the analysis of by-product gas generated from adsorption reaction.

  • PDF

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

Influence of oxyfluorination on activated carbon nanofibers for CO2 storage

  • Bai, Byong-Chol;Kim, Jong-Gu;Im, Ji-Sun;Jung, Sang-Chul;Lee, Young-Seak
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.236-242
    • /
    • 2011
  • The oxyfluorination effects of activated carbon nanofibers (OFACFs) were investigated for $CO_2$ storage. Electrospun CFs were prepared from a polyacrylonitrile/N,N-dimethylformamide solution via electrospinning and heat treatment. The electrospun CFs were chemically activated in order to generate the pore structure, and then oxyfluorination was used to modify the surface. The samples were labeled CF (electrospun CF), ACF (activated CF), OFACF-1 ($O_2:F_2$ = 7:3), OFACF-2 ($O_2:F_2$ = 5:5) and OFACF-3 ($O_2:F_2$ = 3:7). The functional group of OFACFs was investigated using X-ray photoelectron spectroscopy analysis. The C-F bonds formed on surface of ACFs. The intensities of the C-O peaks increased after oxyfluorination and increased the oxygen content in the reaction gas. The specific surface area, pore volume and pore size of OFACFs were calculated by the Brunauer-Emmett-Teller and density functional theory equation. Through the $N_2$ adsorption isotherm, the specific surface area and pore volume slightly decreased as a result of oxyfluorination treatment. Nevertheless, the $CO_2$ adsorption efficiency of oxyfluorinated ACF improved around 16 wt% due to the semi-ionic interaction effect of surface modificated oxygen functional groups and $CO_2$ molecules.