• Title/Summary/Keyword: Gas accident

Search Result 628, Processing Time 0.022 seconds

A Study on the Operation Method of Gas Accident Prevention Supported Capital (가스사고예방지원금 운영방법의 개선에 관한 연구)

  • 송수정;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1999
  • Gas accident prevention supported capital offered by 3 Gas related rules doesn't meet the requirement of real situation when considering that deposit method and size. So the support haven't helped the gas accident prevention. The offer about the gas accident prevention supported capital is treated in this paper, The most powerful and effective method is considered in case of system prevention from gas accidents throughout the way of deposit method, size and operation method of gas accident prevention supported capital for gas accident prevention.

  • PDF

A Study on Calculation of Leakage for LPG Explosion Accident using 3D Scan and CFD (3D 스캔과 CFD를 활용한 LPG 폭발사고의 누출량 산정에 관한 연구)

  • Cho, Wan Su;Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, various engineering approaches have been widely used in the accident investigation field to identify the cause of the accident and to predict damage by accident. Computational analysis is the most commonly used method of accident investigation technique. This technique is mainly used to identify the mechanism of the accident generation and to determine the cause when it is difficult to reproduce the situation at the time of the accident or when it is impossible to perform a reproduction experiment. In this study, The gas explosion analysis for LPG explosion accident generated by defect of the blocking action was performed to determine the accident object, gas leakage amount and predicted the damage caused by the accident using 3D laser scanner and FLACS program. We can quantify the explosive power by LPG gas accident and predict the gas leakage amount, damage by accident and evaluate the stability of the structure through this study. In the future, This method can be widely used in the field of gas safety by improving the reliability and validity of the analysis.

Gas Accident Analysis and Suggestion of Countermeasure at Thawing Season (해빙기 가스사고분석 및 사고예방 대책 제시)

  • Park Kyo-Shik;Kim Eun-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.2 s.10
    • /
    • pp.46-51
    • /
    • 2000
  • It is required that fuel gas accidents should be managed carefully along with the increase of fuel gas consumption. Factors to cause accidents were investigated through a systematic analysis of gas accidents during recent 4 years, which could be applied to prepare countermeasures to reduce gas accidents. The thawing season is found to be weak to gas accidents, showing a slightly higher rate of accident occurring than average. During this term although the number of LPG accident is similar to that of yearly average, countermeasures are required for LPG facilities since the portion of accident is large; in detail, user's carelessness, defective facility, or instrument failure are major causes. The number of city gas accident facility is larger than that of yearly average; particularly, defective facilities, third-party work, and appliance failure are major causes. As a result, countermeasures have been suggested for the accident of large portion or above yearly average.

  • PDF

Development of the Fire Prevention Method related to Gas in the Area of Dense Energy Consumption (에너지 사용 밀집지역에서의 가스 관련 화재예방 기법 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.29-33
    • /
    • 2018
  • Accident likelihood is growing due to a correlation for gas and electricity installed in the area of dense energy consumption like traditional market and underground shopping center. In order to prevent and respond accident risks related to gas and electricity in this area, it should be monitored and predicted for factors of gas leak or electricity by developing safety management system. This study is about accident prediction model development considering fire risk factor related to gas accident. The temperature variation characteristic near a gas burner was analyzed. Also, accident prediction algorithm and related module were developed to prevent fire in the area of dense energy consumption.

An Estimation of the Consequence Analysis for Asphyxiation Accident in Confined Space using C.F.D. (CFD를 활용한 밀폐공간 가스질식사고의 피해 영향 평가)

  • Cho, Wan Su;Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.28-34
    • /
    • 2018
  • Recently, various engineering approaches have been widely used in the accident investigation field to identify the cause of the accident and to predict damage by accident. Computational analysis is the most commonly used method of accident investigation technique. This technique is mainly used to identify the mechanism of the accident generation and to determine the cause when it is difficult to reproduce the situation at the time of the accident or when it is impossible to perform a reproduction experiment. In this study, The computational fluid dynamics analysis for nitrogen asphyxiation accident generated by defect of building structural between diffusion outlet and cooling tower was performed to determine the inflow path of the suffocation gas, death possibility by concentration of suffocation gas and predicted the time of death due to the accident using 3D modeling and FLACS program. We can quantify diffusion concentration of asphyxiation gas and predict mechanism of death occurrence by accident and evaluate the consequence Analysis through this study. In the future, This method can be widely used in the field of gas safety by improving the reliability and validity of the analysis.

Data Mining of Gas Accident and Meteorological Data in Korea for a Prediction Model of Gas Accidents (국내 가스사고와 기상자료의 데이터마이닝을 이용한 가스사고 예측모델 연구)

  • Hur, Young-Taeg;Shin, Dong-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • Analysis on gas accidents by types occurred has been made to prevent the recurrence of accidents, through analysis of past history of gas accident occurring environment. The number of gas accidents has been decreasing, but still accidents are occurring steadily. Gas-using environment and gas accidents are estimated to be closely connected since gas-using types are changing by time period, weather, etc. in terms of accident contents. As a result of analysing gas accidents by 7 meteorological elements, such as the mean temperature, the highest temperature, the lowest temperature, relative humidity, the amount of clouds, precipitation and wind velocity, it has been found out that gas accidents are influenced by temperature or relative humidity, and accident occurs more frequently when the sky is clean and wind velocity is slow. Possibility of gas accidents can be provided in real time, using the proposed model made to predict gas accidents in connection with the weather forecast service. Possibility and number of gas accidents will be checked real time by connecting to the business system of Korea Gas Safety Corp., and it is considered that it would be positively used for preventing gas accidents.

A Gas Accident Statistics and Analysis (가스사고 통계 및 분석에 관한 고찰)

  • Kwon, H.J.;Park, C.O.;Park, C.I.;Yeo, C.H.;Lee, J.W.;Hong, J.R.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • Among the various cases of fire accident, gas accident which is roost essential have a lot of forms and causes. The quantity consumed of gas is increasing because of increment of gas-using families and variations of gas machinery. The quantity consumed of gas in 2007 was 35078 tons and the average rate of increasement was 9.4%. The amount of gas accident was on the peak at 1995 when 557 accidents occurred in a year. In 2007, 123 gas accidents was occurred and the average rate of diminution was 11.5%. Accidents by LP gas took 80% of the whole accident and city gas and high pressure gas took 20%. In case of LP gas, accidents were usually occurred because of lack of blocking after the removal of gas machinery and moveable butane burner. Especially, the accidents cause by carelessness of a provider is increasing. Gas accidents which generate damage of human life and property, are caused by users' carelessness, providers' carelessness, inferiority of structure and old products. In this thesis, We will classify the gas accidents. Furthermore through the classification of accidents by forms, causes and regions, this thesis going to be a reference to understand and prevent the accidents.

  • PDF

A Study on Smart Real-time Atmospheric Dispersion System (지능형 실시간 대기확산 시스템에 관한 연구)

  • Oh, Jeong-Seok;Hyun, Ji-I;Bang, Hyo-Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.44-51
    • /
    • 2012
  • It is more important to realize safety management, medium-large accident prevention and risk prediction as accident of industry facilities can generate enormous physical and human damage because most energy plant might handle toxic substance. Especially, atmospheric dispersion system, which is able to simulate situation, have been used for release accident of toxic substance since the accident can show different of dispersion range and velocity according to release material, storage facility and atmospheric status. However those systems have been used generally in design step of industry facility and are difficult to deal with release accident quickly. Although some researches and cases have been studied for using real-time atmospheric information, there are insufficient system for processing quickly release accident. This paper aims to develop real-time smart atmospheric dispersion system that can deal with release accident quickly by enhancing distinct characteristics and efficiency of energy plant, and select release time and area using intelligent algorithm as accident prevention type.

A Study on the Effectiveness of Gas Safety Devices for Domestic (가정용 가스안전기기의 실효성에 관한 연구)

  • Jo Young-Do;Lee Kyung-Sik;Jang Sung-Dong;Kim Ji-Yun
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.62-69
    • /
    • 2001
  • Gas safety devices are very effective to prevent catastrophic gas accident in domestic. The safety devices are included in domestic gas equipment such as extinguishing safety device and adapted at pipeline such as fuse cock, shut off device with gas alarm and so forth. In spite of using those safety devices, a few hundreds of gas accident was happened annually in residential house. In this study, we analysed systematically the domestic accidents which was happened in five years using fault tree analysis(FTA) method and analysed the effectiveness of individual safety device. And also, it was suggested that the rate of accident was decreased quantitatively by increasing safety device which is adapted in domestic. By analysis of 769 gas accidents in domestic, the order of effectiveness of safety device to prevent domestic gas accident was the multi-functional gas-safe-meter(micom-meter), fuse cock, gas leak alarm and CO alarm. If the above four kind of safety device are adapted to every house, about $59\%$ of accident will be reduced and the most of catastrophic gas accident will be Prevented in domestic.

  • PDF