• Title/Summary/Keyword: Gas Turbine Blade

Search Result 190, Processing Time 0.025 seconds

Evaluation of a Bond Strength of Thermal Barrier Coating for Gas Turbine Blade (가스터빈 블레이드 열차폐 코팅의 접착강도 평가)

  • Kim, Dae-Jin;Lee, Dong-Hoon;Kim, Hyung-Ick;Kim, Mun-Young;Yang, Sung-Ho;Park, Sang-Yoel;Koo, Jae-Mean;Seok, Chang-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.195-199
    • /
    • 2007
  • In this study, bond strength tests were performed for the thermal barrier coating applied to the 1st stage turbine blade. After the tests, the specimens were cut and the locations of failure were observed by using optical microscope. The influence of heat treatment on bond strength of a bond coating and the difference among the three types of bond coatings are treated.

  • PDF

A Study of the Design Technology for Developing a 100kW Class Steam Turbine (100 kW급 증기터빈 설계기술 개발에 관한 연구)

  • Kim, Young-Cheol;Ahn, Kook-Young;Cho, Chong-Hyun;Cho, Soo-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.44-52
    • /
    • 2009
  • Small scale steam turbines are used as mechanical drivers in chemical process plant or power generators. In this study, a design technology was developed for a 100kW class steam turbine which will be used for removing $CO_2$ from the emission gas on a reheated cycle system. This turbine is operated at a low inlet total pressure of $5\;kgf/cm^2$. It consists of two stages and operates at the partial admission. For the meanline analysis, a performance prediction method was developed and it was validated through the performances on the operating small steam turbines which are using at plants. Their results showed that the output power was predicted within 10% deviation although the steam turbines adopted in this analysis were operated at different flow conditions and rotor size. The turbine blades was initially designed based on the computed results obtained from the meanline analysis. A supersonic nozzle was designed on the basis of the operating conditions of the turbine, and the first stage rotor was designed using a supersonic blade design method. The stator and second stage rotor was designed using design parameters for the blade profile. Finally, Those blades were iteratively modified from the flow structures obtained from the three-dimensional flow analysis to increase the turbine performance. The turbine rotor system was designed so that it could stably operate by 76% separation margin with tilting pad bearings.

Thermal shock characteristics of FGM for gas turbine blade (가스터빈 날개용 경사기능재료의 열충격 특성)

  • Lim, Jae-Kyoo;Song, Jun-Hee;Kim, You-Jig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • The development of a new material which should be continuously usable under severe environment of very high temperature has been urgently requested. The conventional thermal barrier coating(TBC) is a two layer coating, but a composition and a microstructure of functionally graded material(FGM) are varied continuously from place to place in ways designed to provide it with the maximum function of mitigating the induced thermal stress. The purpose of this study is to evaluate the heat-resistant characteristics by thermal shock of laser and furnace heating. The fracture behaviors of non-FGM(NFGM) and FGM were investigated based on acoustic emission(AE) technique during thermal shock test. Therefore, it can be concluded that FGM gives higher thermal resistance compared to NFGM by AE signal and fracture surface analysis.

Effect of Hot Isostatic Pressing on Elimination of Internal Defects in IN738LC Superalloy for Gas Turbine Blade (HIP 처리에 의한 가스터빈 블레이드용 IN738LC 초합금의 내부결함 소멸 효과)

  • Park, Young-Kyu;Kim, Soo-Hyung;Kim, Jae-Cheol;Lee, Young-Chan;Kim, Doo-Soo;Choi, Cheol;Kim, Gil-Moo
    • Journal of Korea Foundry Society
    • /
    • v.19 no.5
    • /
    • pp.427-432
    • /
    • 1999
  • Most investment castings contain some porosities and microcavities. In this study, we investigated the elimination trends of various internal defects in IN738LC investment castings for industrial gas turbine blade by hot isostatic pressing. The results showed that cylindrical defects which are under $0.6mm{\Phi}{\times}7mm$ size are mostly eliminated and aspect ratio of defects is more sensitive factor than their cross section shape in removing these defects. Increasing hot isostatic pressure and holding time doesn't affect the elimination trend of cylindrical defects over $0.6mm{\Phi}{\times}7mm$ size because first step(plastic deformation) of HIP densification doesn't occur under these HIPping conditions.

  • PDF

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Yong-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Youn-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.311-318
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

  • PDF

Shape Optimization and Reliability Analysis of the Dovetail of the Disk of a Gas Turbine Engine (가스터빈엔진 디스크의 도브테일 형상 최적화와 신뢰도 해석)

  • Huh, Jae-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • The most critical rotating parts of a gas turbine engine are turbine blades and disc, given that they must operate under severe conditions such as high turbine inlet temperature, high speeds, and high compression ratios. Owing to theses operating conditions and high rotational speed energy, some failures caused by turbine disks and blades are categorized into catastrophic and critical, respectively. To maximize the margin of structural integrity, we aim to optimize the vulnerable area of disc-blade interface region. Then, to check the robustness of the obtained optimized solution, we evaluated structural reliability under uncertainties such as dimensional tolerance and fatigue life variant. The results highlighted the necessity for and limitations of optimization which is one of deterministic methods, and pointed out the requirement for introducing reliability-based design optimization which is one of stochastic methods. Thermal-structural coupled-filed analysis and contact analysis are performed for them.

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.