• Title/Summary/Keyword: Gas Tungsten Arc Welding

Search Result 103, Processing Time 0.02 seconds

Influence of ultrasonic impact treatment on microstructure and mechanical properties of nickel-based alloy overlayer on austenitic stainless steel pipe butt girth joint

  • Xilong Zhao;Kangming Ren;Xinhong Lu;Feng He;Yuekai Jiang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4072-4083
    • /
    • 2022
  • Ultrasonic impact treatment (UIT) is carried out on the Ni-based alloy stainless steel pipe gas tungsten arc welding (GTAW) girth weld, the differences of microstructure, microhardness and shear strength distribution of the joint before and after ultrasonic shock are studied by microhardness test and shear punch test. The results show that after UIT, the plastic deformation layer is formed on the outside surface of the Ni-based alloy overlayer, single-phase austenite and γ type precipitates are formed in the overlayer, and a large number of columnar crystals are formed on the bottom side of the overlayer. The average microhardness of the overlayer increased from 221 H V to 254 H V by 14.9%, the shear strength increased from 696 MPa to 882 MPa with an increase of 26.7% and the transverse average residual stress decreased from 102.71 MPa (tensile stress) to -18.33 MPa (compressive stress), the longitudinal average residual stress decreased from 114.87 MPa (tensile stress) to -84.64 MPa (compressive stress). The fracture surface has been appeared obvious shear lip marks and a few dimples. The element migrates at the fusion boundary between the Ni-based alloy overlayer and the austenitic stainless steel joint, which is leaded to form a local martensite zone and appear hot cracks. The welded joint is cooled by FA solidification mode, which is forming a large number of late and skeleton ferrite phase with an average microhardness of 190 H V and no obvious change in shear strength. The base metal is all austenitic phase with an average microhardness of 206 H V and shear strength of 696 MPa.

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

Selection of Postweld Heat Treatment Condition of a High-Temperature and High-Pressure Forged Valve (고온고압용 단조밸브의 용접후열처리 조건 선정)

  • Park, Jae-Seong;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.48-59
    • /
    • 2014
  • Coupons which have same figure as weld joint of the forged steel valves and 1 inch nominal weld thickness were manufactured using ASTM A182 F92 material. After welding with GTAW method, the welded specimens have been post-weld heat treated at $705^{\circ}C$, $735^{\circ}C$, $750^{\circ}C$, $765^{\circ}C$, $795^{\circ}C$ and $825^{\circ}C$ for 1 hour per 1 inch nominal weld thickness each (Group 1) to evaluate characteristics of welds based on various holding temperature. Indeed, 3 welded specimens were post-weld heat treated for 30 minutes, 1 hour and 2 hour (Group 2) at $735^{\circ}C$ to evaluate characteristics of welds based on various holding time. Hardness values were measured at the weld metal, heat affected zone and base metal to observe hardness change depending on the condition. As a result of the evaluation, appropriate holding temperature for PWHT is proved as $750^{\circ}C$ and $765^{\circ}C$ for 1hour per 1 inch nominal weld thickness. Indeed, holding for 1 hour per 1 inch nominal weld thickness was insufficient for PWHT effect when the holding temperature was at $735^{\circ}C$. The microstructure of post-weld heat treated weld metal was determined as tempered-martensite structure.

  • PDF