• Title/Summary/Keyword: Gas Transportation

Search Result 680, Processing Time 0.026 seconds

Expressway Greenhouse Gas Reduction Effect Analysis According to the Electric Vehicle Supply (전기차 보급전망에 따른 고속도로 온실가스 저감효과 분석)

  • Lee, Jin Kak;Han, Dong Hee;Oh, Chang Kwon;Jung, Chul Ki;Oh, Kwan Kyo
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.5
    • /
    • pp.37-47
    • /
    • 2013
  • This Study analyzed the electric car effect on the Korea Expressway System in terms of year 2020 $CO_2$ emission. The analysis was based on the green car dissemination goal by the government and year 2010 emission statistics. Major contents performed in the study area were as follows. First, the greenhouse gases emitted from the highways were found to be approximately 17.3 million tons of $CO_2$ as of 2010. Analysis showed the emission would be 17.4 million tons in 2015 and 16.2 million tons in 2020. The results in the pattern reflect the effect of O/D on the KTBD and the trend of traffic increase from 2015 to 2020 followed by decrease in 2020. Second, in the case of greenhouse gas emission with the anticipated supply of electric cars, the amount of emission in 2015 will be 17.1 million tons, which is about 2.0% reduction compared to the lack of introduction of electric cars. The analysis also showed that in 2020, the amount of emission will be 14.2 million tons, which indicates the effect of reduction is 12.8% compared to non implementation of the program.

A Study on the Gas-liquid Separation Effect of the Knockout Drum in the Flare System (플레어시스템에서 녹아웃드럼의 기·액 분리효과에 관한 연구)

  • Kwon, Hyun-Gil;Baek, Jong-Bae;Kim, Sang-Ryung
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.3
    • /
    • pp.1-8
    • /
    • 2021
  • Among the flare systems that handle discharged substances from safety valves, the knockout drum was a key facility for safety, but the installation standards were not clear, so it was necessary to review the standards acceptable to the workplace and regulatory agencies. After investigating the domestic and foreign technical standards of knockout drums and the deficiencies of previous studies, research was first conducted on the degree of mass discharge, the installation location of the intermediate knockout drum, and the effect of changes in the composition of the discharged material. As a result of the study under the process simulation conditions, the gas-liquid separation of the knockout drum was completed in a small amount of less than 7,500kg/hr. However, when more than that was released, the gas-liquid separation effect was small even with the addition of an intermediate knockout drum. In addition, when the composition ratio of the material easily condensed was increased (molar fraction 10%), the gas-liquid separation effect of the knockout drum increased in the case of mass release. The gas-liquid separation effect was analyzed to be greater when the knockout drum was installed adjacent to the stack than the knockout drum was installed adjacent to the process equipment.

A Study on the Structural Analysis of Cryogenic Submerged Pump (극저온용 액중펌프 구조해석에 관한 연구)

  • Chin, Do-Hun;Yi, Chung-Seob
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.727-733
    • /
    • 2020
  • Recently, reciprocating cryogenic pumps are mainly developed for small-and-mid sized fuel supply systems. Centrifugal type pumps are not actively developed. Most cryogenic submerged pumps are imported. For transportation, cryogenic liquefied natural gas requires the liquid pump technology that can works in extreme evironments. In order to transport liquefied natural gas, it is necessary to apply pump technology. This is the fundamental research for developing the submerged pump technology applicable to the transportation and storage system equipment of cryogenic liquefied system. It tries to secure basic design materials through reverse-engineering in the cryogenic submerged pump development. Regarding materials, STS-304 and STS-431 which are stainless materials widely used in the cryogenic area are applied. Aluminum alloy is applied to impeller and upper manifolder and the pump rotates at the high speed of 6,000rpm.

A Study on the Air Cushion Pad of Non-contact Glass Transportation Unit (비접촉식 유리 평판 이송 장치 공기 패드 형상에 대한 연구)

  • Jeon, Hyeon-Ju;Kim, Gwang-Seon;Im, Ik-Tae
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.138-144
    • /
    • 2006
  • Non-contact transportation of a large-sized glass plate using air cushion for the sputtering system of liquid crystal display panel was considered. The gas is injected through multiple small holes to maintain the force for levitating glass plate. Complex flow field and resulting pressure distribution on the glass surface was numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

LCD 제조용 스퍼터링 장비의 비접촉식 유리평판 이송장치에 대한 수치적 연구

  • Gang, U-Jin;Im, Ik-Tae;Kim, U-Seung
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.149-156
    • /
    • 2007
  • Non-contact transportation of the large-sized glass plate using air-cushion is considered for sputtering system of LCD panel. The Argon gas from second gas injection holes is injected to levitate and transport the glass plate. Low maximum pressure and uniform pressure distribution on the bottom surface of the glass plate must be maintained for stable levitation and transportation of the glass plate. Therefore, the analysis of fluid flow between the glass plate and the air-pad is numerically performed for varying space between the injection holes in this study. The pressure uniformity on the bottom surface of the glass plate is evaluated for overall glass plate. The distance between the injection holes must be designed below 90 mm for obtaining the low maximum pressure and uniform pressure distribution.

  • PDF

Strategic Planning for Bioenergy Considering Biomass Availability in Rural Area (바이오매스 부존특성을 고려한 농촌지역 바이오에너지 보급전략)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.51-58
    • /
    • 2008
  • Unit costs for energy production in bioenergy facilities are dependent upon both fixed cost for facility construction and operational costs including biomass feedstock supply. With the increase of capacity, unit fixed cost could be decreased while supply cost tends to increase due to the longer transportation distance. It is desirable to take into account biomass availability in planning bioenergy facilities. A cumulative curve relationship was proposed to relate biomass availability and cumulative products of biomass amount and transportation distance. Optimum size of gasification facilities was affected by collection cost, biomass cumulative relationship. Based on biomass availability of Icheon-City, optimum sizes were about $400kW_{th}$ for gas production, and about $200kW_{el}$ for power generation. Unit cost of bioenergy production could be substantially reduced by reducing collection cost through supplying biomass from diverse sources including land development areas where significant amount of waste wood is generated. When planning bioenergy facilities, however, biomass availability and spatial distribution are key factors in determining the size of capacity.

An oil-tolerant and salt-resistant aqueous foam system for heavy oil transportation

  • Sun, Jie;Jing, Jiaqiang;Brauner, Neima;Han, Li;Ullmann, Amos
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.99-108
    • /
    • 2018
  • An oil-tolerant and salt-resistant aqueous foam system was screened out as a possible lubricant to enable cold heavy oil transportation. The microstructures and viscoelasticity and effects of heavy oil, salt and temperature on the foam stability were investigated and new rheological and drainage models were established. The results indicate the foam with multilayered shells belongs to a special microcellular foam. The viscoelasticity could be neglected due to its low relaxation time. The drainage process can be divided into three stages. The foam with quality of 67.9% maintains great stability at high oil and salt concentrations and appropriate elevated temperature.

Investigation on Formation Behaviors of Synthesized Natural Gas Hydrates (합성 천연가스의 하이드레이트 형성 거동 연구)

  • Lee, Jong-Won;Lee, Ju-Dong
    • Korean Chemical Engineering Research
    • /
    • v.50 no.5
    • /
    • pp.890-893
    • /
    • 2012
  • Gas hydrates are solid crystal structures formed by enclathration of gaseous guest species into 3-dimensional lattice structure of hydrogen-bonded water molecules. These compounds can be potentially used as an energy storage/transportation medium because they can hold a large amount of gas in a small volume of the solid phase. In addition, huge amount of natural gas, buried in seabeds or permafrost region in the form of the solid hydrate, is regarded as a future energy source. In this study, synthesized natural gas, whose composition is 90.0 mol% of methane, 7.0 mol% of ethane, and 3.0 mol% of propane, was used to identify formation behaviors of natural gas hydrates for the purpose of applying the gas hydrate to a storage/transportation medium of natural gas. According to the experimental results obtained by means of the solid-state NMR and high-resolution powder XRD methods, it is found that formed natural gas hydrates have crystal structure of the structure-II hydrate, and that methane occupies both small and large cages, while the others only occupy large ones. In addition, both the NMR spectroscopy and the gas chromatograph showed that there exists preferential occupation among the natural gas components during the hydrate formation. Compositional changes after the hydrate formation revealed that the preferential occupation is in order of propane, ethane, and methane (propane is the most preferential guest species when forming natural gas hydrates).

Assessment of Gas Leakage for a 30-inch Ball Valve used for a Gas Pipeline (가스 파이프라인용 30인치 볼 밸브의 누설량 평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.230-235
    • /
    • 2016
  • The purpose of this study is to evaluate the gas leakage for a 30-inch ball valve. The ball valve was designed and manufactured for a natural gas transportation through a long-distance pipeline mainly installed in the permafrost region. The gas leakage assessment is based on the pressure testing criteria of international standards. Pressure conditions of the gas leakage test was employed 70 bar, 100 bar, and 110 bar. The amount of the gas leakage at each pressure condition was small and had a value under the pressure testing criteria, ISO 5208. Gas leakage with respect to the test pressure was predicted by the polynomial curve fitting using the experimental results. It is found that the gas leakage rate according to the pressure is proportion to a second order curve.

Estimation of GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Side Skirt and Boat Tail (사이드스커트와 보트테일을 이용한 대형화물차량의 연비개선 효과 및 온실가스 감축량 추정)

  • Her, Chul haeng;Yun, Byoeng gyu;Kim, Dae wook
    • Journal of Climate Change Research
    • /
    • v.7 no.2
    • /
    • pp.177-184
    • /
    • 2016
  • Recently, the need for technology development of commercial vehicle fuel consumption has emerged. Fuel economy improvement of transport equipment and transportation efficiency, and increasing attention to the logistics cost reduction measures. Increasing attention to the logistics cost reduction measures by fuel economy improvement of transport equipment and transportation efficiency. In this study, we have installed aerodynamic reduction device (side skirt, boat tail) to 14.5 ton cargo trucks and 45 ft tractor-trailers. And the fuel consumption was compared installed before and after. Fuel economy assessment for the aerodynamic reduction value device was tested by modifying the SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test in according domestic situation. Greenhouse gas reductions were calculated in accordance with the scenario, including fuel consumption test results. When the 14.5 ton cargo trucks has been equipped with side skirts and boat tail, it confirmed the improvement in fuel efficiency of 4.72%. One Heavy-duty truck's the annual greenhouse gas reductions value are $6.86ton\;CO_2\;eq$. And if applying the technology to more than 50% of registered 15 ton trucks, greenhouse gas reductions are calculated as $686,826ton\;CO_2\;eq./yr$.