• Title/Summary/Keyword: Gas Supply

Search Result 1,269, Processing Time 0.042 seconds

Analysis of Vertical Fragmentation of the Regional Industries : Using Average Propagation Length in the Multi-Regional Input-Output Table in 2005 (지역 산업의 생산 분화 과정 분석 : 2005년 지역 간 투입산출표의 평균전파길이 추정)

  • Kim, Eui-June;Yi, Yoo-Jin;Chang, Jae-Won;Choi, Eun-Jin
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.77-94
    • /
    • 2012
  • The purpose of this study is to analyze the process of vertical fragmentation of regional industries in Korea using Revealed Comparative Advantage index (RCA) and Average Propagation Length (APL). First of all, the competitiveness in regional export and substitution of regional imports were strong in the Electricity, Gas, and Water supply sector in Gyeongnam, and consumer-oriented Manufacturing sector in Incheon, Gyeongnam, and Gwangju. The high values of the APL were also found in the regions with common similarity with respect to the industrial structure and the sectors with indirect effects. In addition, the industrial sectors with high quality of infrastructure, and endowed services tended to be located in the beginning of the production chain. FInally, since manufacturing and service sectors in Seoul has higher APL, they could lead the growth of other related industries as key sectors, in the production fragmentation.

  • PDF

A Comparative Study on Power System Harmonics for Offshore Plants (해양플랜트 전력시스템의 고조파 비교분석에 관한 연구)

  • Kim, Deok-Ki;Lee, Won-Ju;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.900-905
    • /
    • 2016
  • The field of power system harmonics has been receiving a great deal of attention recently. This is primarily due to the fact that non-linear (or harmonic-producing) loads comprise an ever-increasing portion of what is handled at a typical industrial plant. The incidence rate of harmonic-related problems is low, but awareness of harmonic issues can still help increase offshore power plant system reliability. On the rare occasion that harmonics become a problem, this is either due to the magnitude of harmonics produced or power system resonance. This harmonic study used an electrical configuration for the offloading scenario of a Floating LNG (FLNG) unit, considering power load. This electrical network configuration is visible in the electrical network load flow study part of the project. This study has been carried out to evaluate the performance of an electric power system, focusing on the harmonic efficiency of an electrically driven motor system to ensure offshore plant safety. In addition, the design part of this study analyzed the electric power system of an FLNG unit to improve the safety of operation and maintenance.

Partial Discharge Characteristics and Localization of Void Defects in XLPE Cable (XLPE 케이블에서 보이드 결함의 부분방전 특성과 위치추정)

  • Park, Seo-Jun;Hwang, Seong-Cheol;Wang, Guoming;Kil, Gyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Research on condition monitoring and diagnosis of power facilities has been conducted to improve the safety and reliability of electric power supply. Although insulation diagnostic techniques for unit equipment such as gas-insulated switchgears and transformers have been developed rapidly, studies on monitoring of cables have only included aspects such as whether defects exist and partial discharge (PD) detection; other characteristics and features have not been discussed. Therefore, this paper dealt with PD characteristics against void sizes and positions, and with defect localization in XLPE cable. Four types of defects with different sizes and positions were simulated and PD pulses were detected using a high frequency current transformer (HFCT) with a frequency range of 150kHz~30MHz. The results showed that the apparent charge increased when the defect was adjacent to the conductor; the pulse count in the negative half of the applied voltage was about 20% higher than that in the positive half. In addition, the defect location was calculated by time-domain reflectometry (TDR) method, it was revealed that the defect could be localized with an error of less than1m in a 50m cable.

A Study on Characteristics of Performance and $NO_x{\cdot}THC$ Emissions in Turbo Intercooler ECU Common-rail Diesel Engines with a Combined Plasma EGR System (플라즈마 EGR 조합시스템 터보 인터쿨러 ECU 커먼레일 디젤기관의 성능 및 $NO_x{\cdot}THC$ 배출물 특성에 관한 연구)

  • Bae, Myung-Whan;Ku, Young-Jin;Lee, Bong-Sub
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.10-21
    • /
    • 2006
  • The aim in this study is to develop the combined EGR system with a non-thermal plasma reactor for reducing exhaust emissions and improving fuel economy in turbo intercooler ECU common-rail diesel engines. At the first step, in this paper, the characteristics of performance and $NO_x{\cdot}THC$ emissions under four kinds of engine loads are experimentally investigated by using a four-cycle, four-cylinder, direct injection type, water-cooled turbo intercooler ECU common-rail diesel engine with a combined plasma exhaust gas recirculation(EGR) system operating at three kinds of engine speeds. The EGR system is used to reduce $NO_x$ emissions, and the non-thermal plasma reactor and turbo intercooler system are used to reduce THC emissions. The plasma system is a flat-to-flat type reactor operated by a plasma power supply. The fuel is sprayed by pilot and main injections at the variable injection timing between BTDC $15^{\circ}$ and ATDC $1^{\circ}$ according to experimental conditions. It is found that the specific fuel consumption rate with EGR is increased, but the fuel economy is better than that of mechanical injection type diesel engine as compared with the same output. Results show that $NO_x$ emissions are decreased, but THC emissions are increased, as the EGR rate is elevated. $NO_x$ and THC emissions are also slightly decreased as the applied electrical voltage of the non-thermal plasma reactor is elevated. Thus one can conclude that the influence of EGR in $NO_x$ and THC emissions is larger than that of the non-thermal plasma reactor, but THC emissions are greatly influenced by the non-thermal plasma reactor as the EGR rate is elevated.

Life Cycle Assessment of Part Reuse/Recycling in the End-of-Life Stage of Personal Computers (부품 재사용 여부에 따른 폐컴퓨터에 대한 전과정평가(LCA))

  • Lim, Hyeong-Soon;Yang, Yun-Hee;Song, Jun-Il;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.494-500
    • /
    • 2006
  • Life Cycle Assessment(LCA) is an environmental assessment tool for evaluating environmental burdens associated with products, processes and activities from the raw material acquisition stage to the end-of-life stage. End-of-life stage as well as other processes requires a reliant database in order to increase the confidence in the LCA results. In this study, the flow of Personal Computer(as PC) in the end-of-life stage was examined and the database of two scenarios has been established, i.e. one is part reuse and the other is no part reuse, in the end-of-life phase of PC. Also, key environmental issues were identified by carrying out LCA on a PC in the end-of-life phase for eight environmental impact categories. The 'ozone layer depletion' contributes the highest environmental impact due to generation of $Cl_2$ gas during the incineration of waste plastics. In addition, the scenario 1(part reuse) is more environmentally sound than the scenario 2(no part reuse) when comparing two scenarios.

A Study of Expressway Tollbooth Metering Effect (고속도로 영업소 미터링 효과에 관한 연구)

  • Im, Jin-Won;Yoon, Jae-Yong;Lee, Eui-Eun;Kim, Kwan-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • According to the worldwide efforts to reduce greenhouse gases consequent upon climatic change, the field of road traffic is also making diverse efforts to reduce the emissions of greenhouse gases. Among these, the exhaust gases from vehicles, the so-called main culprit of the greenhouse gases will take place the more as delay and tie-up of vehicles ever take place. Accordingly, as a scheme for reducing the delay & tie-up of vehicles, it's possible to bring up the idea of supply of new facilities and management of the existing facilities; recently, a lot more focus is being put on the management of the existing facilities due to enormous amounts of construction cost. In the midst of growing concern for traffic demand management policy, it's about the time we should do research on the tollbooth metering on the expressway whose research is almost non-existent home and abroad. As a traffic demand management policy coming to happen in case of the management of pay expressway like Japan and Korea, this research analyzed the contents of tollbooth metering, its effect and its subsequent convenience. Especially as a tool for effect analysis, this research made an analysis using VISSIM-a micro-simulation tool. As the tollbooth metering promoted, as a part of green traffic promotion strategy, is expected to contribute to improvement in traffic flow and reduction in carbon emissions, etc. It seems that there needs to be continuous research work on the management plan & revitalization plan for maximization of its effect later as well.

A Study on the Application of the Solar Energy Seasonal Storage System Using Sea water Heat Source in the Buildings (해수냉열원을 이용한 태양열계간축열시스템의 건물냉방 적용에 관한 연구)

  • Kim, Myung-Rae;Yoon, Jae-Ock
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.56-61
    • /
    • 2009
  • Paradigm depending only on fossil fuel for building heat source is rapidly changing. Accelerating the change, as it has been known, is obligation for reducing green house gas coming from use of fossil fuel, i.e. reaction to United Nations Framework Convention on Climate Change. In addition, factors such as high oil price, unstable supply, weapon of petroleum and oil peak, by replacing fossil fuel, contributes to advance of environmental friendly renewable energy which can be continuously reusable. Therefore, current new energy policies, beyond enhancing effectiveness of heat using equipments, are to make best efforts for national competitiveness. Our country supports 11 areas for new renewable energy including sun light, solar heat and wind power. Among those areas, ocean thermal energy specifies tidal power generation using tide of sea, wave and temperature differences, wave power generation and thermal power generation. But heat use of heat source from sea water itself has been excluded as non-utilized energy. In the future, sea water heat source which has not been used so far will be required to be specified as new renewable energy. This research is to survey local heating system in Europe using sea water, central solar heating plants, seasonal thermal energy store and to analyze large scale central solar heating plants in German. Seasonal thermal energy store necessarily need to be equipped with large scale thermal energy store. Currently operating central solar heating system is a effective method which significantly enhances sharing rate of solar heat in a way that stores excessive heat generating in summer and then replenish insufficient heat for winter. Construction cost for this system is primarily dependent on large scale seasonal heat store and this high priced heat store merely plays its role once per year. Since our country is faced with 3 directional sea, active research and development for using sea water heat as cooling and heating heat source is required for seashore villages and building units. This research suggests how to utilize new energy in a way that stores cooling heat of sea water into seasonal thermal energy store when temperature of sea water is its lowest temperature in February based on West Sea and then uses it as cooling heat source when cooling is necessary. Since this method utilizes seasonal thermal energy store from existing central solar heating plant for heating and cooling purpose respectively twice per year maximizing energy efficiency by achieving 2 seasonal thermal energy store, active research and development is necessarily required for the future.

  • PDF

An Analysis of Best Practices for Efficient Utility Relocation and an Inquiry into the Applicability of SUE (효율적인 지하지장물 이설을 위한 모범사례분석 및 SUE 적용에 관한 연구)

  • Lee, Seung-Hyun;Baek, Seung-Ho;Tae, Yong-Ho;Ahn, Bang-Ryul;Park, Hyeon-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.971-976
    • /
    • 2007
  • In the U.S., utility damages or utility delay caused by conflicts during the underground utility relocation is one of the weighty problem in the construction industry. Also, in domestic case, delay and additional cost caused by underground utility(i.e, electricity, communication, gas, water supply and sewerage) relocation has been happened so that there is an increase of claims for responsibility between owners and contractors. However, there is insufficient survey for the recent circumstance of additional cost for delay and design changes caused by utility relocation and shortage of enough research for solving and analyzing of causes and their ripple effect. This research presents a result of the study about the best practices of FHWA(Federal Highway Administration), SHAs(State Highway Agencies) and the utility companies managing utility relocation. Also, it presents the basic concept of SUE(Subsurface Utility Engineering), the most reliable tool of FHWA presented, and investigates the developing status about SUE in Korea. At the end of this paper, this research proposes a practical and more applicable study about the efficient utility relocation focusing on local industry.

  • PDF

Economic Feasibility Analysis of the Metropolitan Area Green Heat Project (수도권 그린히트 프로젝트의 경제적 타당성 분석)

  • Kim, Sang-Kee;Kim, Lae Hyun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • The Metropolitan Area Green Heat Project (MAGHP), which collects unused heat gathered from power plants, steel works, landfills in western Metropolitan area and distribute it to integrated energy business (IEB) companies, is proposed for the purpose of enhancing energy efficiency and providing low-price heat for IEB companies. Therefore, in order to decide on whether to initiate the MAGHP, the economic feasibility analysis of the project is widely demanded. This paper attempts to consider and measure four economic benefits: heat supply benefit, production cost reduction benefit, greenhouse gas mitigation benefit, and air quality improvement benefit. In addition, the paper tries to conduct the economic feasibility analysis. The project requires three-year investment and thirty-year operation. Three important findings emerge from the analysis. First, its net present value is computed to be 1,269 billion won and more than zero. Second, its benefit/cost ratio is calculated to be 1.72 and bigger than 1.0. Third, its internal rate of return is estimated to be 24.26% and larger than the social rate of return, 5.5%. In conclusion, the MAGHP is socially profitable and should be conducted immediately.

Analysis of energy security by the diversity indices: A case study of South Korea (다양성지수를 통한 에너지안보수준 분석: 한국사례를 중심으로)

  • Jang, Yong-Chul;Bang, Ki-Yual;Lee, Kwan-Young;Kim, Kyung Nam
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • How to determine the extent of national energy security? In this paper, we estimate it by comparative analysis of South Korea and other OECD countries in terms of energy diversity (fuel diversity). Energy security consists of 4 key factors such as availability, accessibility, acceptability, affordability. Especially the importance of accessibility can grow as local imbalance of supply and demand increases. As a proxy of the accessibility, fuel diversity can be a significant indicator to estimate a measure of energy security. In this paper, we use Shannon-Wiener index to measure energy diversity. If fuel diversity increases, the stability of energy security also should increase, because of the smoothing effect to lessen dependence on key energy sources. In 2012 Korean growth rate of H-index (energy diversity) is 18.38%, which is higher than other OECD countries. However, Korean H-index itself is 1.93, lesser than other countries. Shift from oil to coals/gas within fossil fuels has more impact on H-index than weight transition from fossil fuels to renewable energies in Korea. We conclude that more renewable energy is an effective solution to achieve higher energy diversity and ultimately higher energy security as the same as the German case.