• Title/Summary/Keyword: Gas Sensors

Search Result 1,074, Processing Time 0.033 seconds

Implementation of a WIPI-based Intelligent Home Service Robot (WIPI 기반의 지능형 홈서비스 로봇의 구현)

  • Kim, Jin-Hwan;Shin, Dong-Suk
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.19-28
    • /
    • 2008
  • In this paper, we implemented an intelligent home service robot system which alerts users to danger by wireless internet platforms for interoperability(WIPI) of a cellular phone. This paper discusses the three parts of the system: robot, middleware and mobile system. First, the robot consists of a gas sensor, a fire detector, ultrasonic sensors, motors, a camera and a Bluetooth module. The robot perceives various danger circumstances. Second, the middleware connects the robot and the mobile system. It monitors the robot and sends emergency notification SMS message to the user's cellular phone if in danger. Third, the mobile system sends commands which control the robot using TCP/IP protocol. The proposed scheme is to control the sensors of the robot part through Atmega 128 processor, and the robot and middleware parts will be installed in the household, and will be controled by mobile part from the outside.

Air Pollution Monitoring RF-Sensor System Trackable in Real Time (실시간 위치탐지 기능을 갖춘 대기오염 모니터링 RF-Sensor 시스템)

  • Kim, Jin-Young;Cho, Jang-Ho;Jeon, Il-Tae;Jung, Dal-Do;Kang, Joon-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.21-28
    • /
    • 2010
  • Air pollution monitoring has attracted a lot of interests because it affects directly to the human life quality. The most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the specific area. Therefore, it is difficult to install them to as many places as people need. In this work, we constructed a low price and small size Radio Frequency(RF) sensor system to solve this problem. This system also had the measurement range similar to the ones used in the air pollution forecast systems. This system had the sensor unit to measure the air quality, the central processing unit for air quality data acquisition, the power unit to supply the power to every units, and the RF unit for the wireless transmission and reception of the data. This system was easy to install in the field. We also added a GPS unit to track the position of the RF-sensor in real time by wireless communication. For the various measurements of the air pollution, we used CO, $O_3$, $NO_2$ sensors as gas sensors and also installed a dust sensor.

Reduced graphene oxide field-effect transistor for biomolecule detection and study of sensing mechanism

  • Kim, D.J.;Sohn, I.Y.;Kim, D.I.;Yoon, O.J.;Yang, C.W.;Lee, N.E.;Park, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.431-431
    • /
    • 2011
  • Graphene, two dimensional sheet of sp2-hybridized carbon, has attracted an enormous amount of interest due to excellent electrical, chemical and mechanical properties for the application of transparent conducting films, clean energy devices, field-effect transistors, optoelectronic devices and chemical sensors. Especially, graphene is promising candidate to detect the gas molecules and biomolecules due to the large specific surface area and signal-to-noise ratios. Despite of importance to the disease diagnosis, there are a few reports to demonstrate the graphene- and rGO-FET for biological sensors and the sensing mechanism are not fully understood. Here we describe scalable and facile fabrication of rGO-FET with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}1$-antichymotrypsin (PSA-ACT) complex, in which the ultrathin rGO sensing channel was simply formed by a uniform self-assembly of two-dimensional rGO nanosheets on aminated pattern generated by inkjet printing. Sensing characteristics of rGO-FET immunosensor showed the highly precise, reliable, and linear shift in the Dirac point with the analyte concentration of PSA-ACT complex and extremely low detection limit as low as 1 fg/ml. We further analyzed the charge doping mechanism, which is the change in the charge carrier in the rGO channel varying by the concentration of biomolecules. Amenability of solution-based scalable fabrication and extremely high performance may enable rGO-FET device as a versatile multiplexed diagnostic biosensor for disease biomarkers.

  • PDF

Monitoring System for the Elderly Living Alone Using the RaspberryPi Sensor (라즈베리파이 센서를 활용한 독거노인 모니터링 시스템)

  • Lee, Sung-Hoon;Lee, June-Yeop;Kim, Jung-Sook
    • Journal of Digital Contents Society
    • /
    • v.18 no.8
    • /
    • pp.1661-1669
    • /
    • 2017
  • In 2017, Korea has reached 1.3 million elderly people living alone. The government is promoting the basic care service for the elderly by using care workers to check the security of the elderly living alone. However, due to lack of service personnel and service usage rate of elderly care workers, it is difficult to manage. To improve these environmental constraints, this study attempted to construct a monitoring system for elderly people living alone by using sensors such as temperature, humidity, motion detection, and gas leak detection. The sensor periodically collects the current status data of the elderly and sends them to the server, creates a real time graph based on the data, and monitors it through the web. In the monitoring process, when the sensor is out of the range of the specified value, it sends a warning text message to the guardian to inform the current situation, and is designed and implemented so as to support the safety life of the elderly living alone.

Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors (채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정)

  • Lee, Yongtaek;Yang, Gyung Yull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • In this study, water distribution inside a proton exchange membrane fuel cell (PEMFC) was measured experimentally. Water distribution is non-uniform because of vigorous chemical reaction and mass transport and has been difficult to measure experimentally. Therefore, much research relied on indirect measuring methods or numerical simulations. In this study, several mini temperature-humidity sensors were installed at the channel for measuring temperature and humidity of the flowing gas throughout the channel. Only one of two electrode channels was humidified externally, and the humidity distribution on the other side was measured, enabling the observation of water transport characteristics under various conditions. Diffusion through the membrane became more vigorous as the temperature of the humidifier rose, but at high current density, electro-osmotic drag became more effective than diffusion.

Implementation of Home Security System using a Mobile App (모바일 앱을 이용한 홈 시큐리티 시스템 구현)

  • Kwon, Young-Il;Jeong, Sam-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.4
    • /
    • pp.91-96
    • /
    • 2017
  • In this paper, we aim to respond efficiently to crime by using Arduino and smartphone apps in response to increasing number of house-breaking crimes. It receives the signal of the sensor installed in the house and connects it with the app of the smartphone. To use the app, you can download the app from the user's smartphone, launch the app, and operate the operation outside the home, not only inside the house, by linking the executed app. Among the sensors installed in the house, the movement detection sensor is used to enhance the security, and the gas leakage sensor and the flame detection sensor can be used to easily detect the risk of fire and to prevent the fire early. Security is further enhanced by the ability to remotely control the front door with a smartphone. After that, various sensors can be added and it can be developed as a WiFi module in addition to the Bluetooth module.

Characteristics of c-axis oriented PLT thin films and their application to IR sensor (c-축 배양된 PLT 박막의 특성 및 IR센서 응용)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.87-92
    • /
    • 1996
  • The PLT thin films on (100) cleaved MgO single crystal substrate have been fabricated by rf magnetron sputtering using a PbO-rich target. The dependence of physical and electrical properties on the degree of c-axis orientation has been studied. The degree of c-axis orientation of PLT thin films depends on fabrication conditions. Fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, gas ratio of $Ar/O_{2}$, and rf power density were $640^{\circ}C$, 10 mTorr, 10 seem, and $1.7\;W/cm^{2}$, respectively. In these conditions, the PLT thin film showed the Pb/Ti ratio of 1/2 at the surface, the resistivity of $8{\times}10^{11}{\Omega}{\cdot}cm$, and dielectric constant of 110. The pyroelectric infrared sensors with these PLT thin films showed the peak to peak voltage of 450 m V and signal to noise ratio of 7.2.

  • PDF

Facile in situ Formation of CuO/ZnO p-n Heterojunction for Improved H2S-sensing Applications

  • Shanmugasundaram, Arunkumar;Kim, Dong-Su;Hou, Tian Feng;Lee, Dong Weon
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.156-161
    • /
    • 2020
  • In this study, hierarchical mesoporous CuO spheres, ZnO flowers, and heterojunction CuO/ZnO nanostructures were fabricated via a facile hydrothermal method. The as-prepared materials were characterized in detail using various analytical methods such as powder X-ray diffraction, micro Raman spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, and transmission electron microscopy. The obtained results are consistent with each other. The H2S-sensing characteristics of the sensors fabricated based on the CuO spheres, ZnO flowers, and CuO/ZnO heterojunction were investigated at different temperatures and gas concentrations. The sensor based on ZnO flowers showed a maximum response of ~141 at 225 ℃. The sensor based on CuO spheres exhibited a maximum response of 218 at 175 ℃, whereas the sensor based on the CuO/ZnO nano-heterostructure composite showed a maximum response of 344 at 150 ℃. The detection limit (DL) of the sensor based on the CuO/ZnO heterojunction was ~120 ppb at 150 ℃. The CuO/ZnO sensor showed the maximum response to H2S compared with other interfering gases such as ethanol, methanol, and CO, indicating its high selectivity.

Sensitivity improvement of $CeO_2$ oxygen sensor by betterment of surface characteristics through chemical mechanical polishing process (CMP 공정을 통한 표면 특성 개선에 의한 $CeO_2$ 산소 센서 감도 향상 연구)

  • Jung, Pan-Gum;Jun, Young-Kil;Ko, Pil-Ju;Kim, Nam-Hoon;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.65-65
    • /
    • 2007
  • Microstructure and surface roughness of the sensing materials should be improved to use them in advanced sensor applications because the uneven surface roughness degrades the light reflection, pattern resolution, and devices performance. Chemical mechanical polishing (CMP) processing was selected for improving the surface roughness of $CeO_2$ which is one of the well known materials for the oxygen gas sensors. Surface roughness and removal rate of spin coated $CeO_2$ thin films were examined with a change of CMP process parameters such as down force and table speed. The optimized process condition, reflected by the surface roughness with the hillock-free surface as well as the excellent removal rate with the good uniformity, was obtained. The effects of the improved surface roughness on the sensing property of $CeO_2$ thin films were also confirmed. The improved sensitivity of $CeO_2$ thin films for oxygen sensors were obtained after CMP process by the improved surface characteristics. Therefore, we conclude that sensing property of $CeO_2$ thin film is strongly dependent on the surface roughness of $CeO_2$ thin films by using CMP process.

  • PDF

Development of Smart Cargo Level Sensors Including Diagnostics Function for Liquid Cargo Ships (액체운반용 선박을 위한 진단기능을 가지는 스마트 카고 센서 개발)

  • Bae, Hyeon;Kim, Youn-Tai;Park, Dae-Hoon;Kim, Sung-Shin;Choi, Moon-Ho;Jang, Yong-Suk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.341-346
    • /
    • 2008
  • This paper is to develop a monitoring system with diagnosis for smart cargo sensors that is for management and maintenance of the liquid cargo ships. The main goal of the system is to achieve the total automation system of the cargo sensor. By this study, the active smart sensor for the liquid cargo ships is designed and developed that guarantees high-confidence, stability, and durability. The proposed system consists of a monitoring part of the steam pressure, high-level monitoring, over flowing monitoring, gas monitoring, and tank temperature monitoring. The signals transferred from each unit system are used for sensor diagnosis based on confidence and accuracy. Finally, in this study, the total supervisory monitoring system is developed to maintain and manage the cargo effectively based on fault diagnosis and prognosis of the each sensor system.