• Title/Summary/Keyword: Gas Sensors

Search Result 1,074, Processing Time 0.031 seconds

Driving Method of Ultraviolet Sensor for Fire alarms using Pulse Width Modulation (PWM을 이용한 화재 감지를 위한 자외선 센서의 구동 방법)

  • Lim, Byung-Hyun;Ko, Nak-Yong;Hwang, Jong-Sun;Kim, Yeong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.31-35
    • /
    • 2004
  • We propose driving method of Ultraviolet sensor for fire alarms using pulse width modulation that used to fire detector with sensor of private-use detectable light energy as ultraviolet in energy of electromagnetic-wave type radiate from flame, when combustible burn with contain carbon,. Ultraviolet sensor is UV Tron using gas multiplication effect to current discharge and photoelectric effect of metal. To have high sensibility and to gain proper output voltage, it has high responsive performance. This research designed driving circuit with UV sensors and proposed method of false alarm reduced to resemble fire. the result propers the prevention and extinction of fire technique degree, certificated operation of detector.

  • PDF

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Species Concentration Measurement Technique Using Wavelength Modulation Absorption Spectroscopy (파장변조 광흡수 분광법을 이용한 농도 계측 기법)

  • Ahn, J.H.;Kim, Y.M.
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.67-76
    • /
    • 2004
  • Diode laser absorption sensors are advantageous because they may provide fast, sensitive, absolute, and selective measurements of species concentration. These systems are very attractive for practical applications owing to its compactness, reasonable cost, robustness, and ease of use. In addition, diode lasers we fiber-optic compatible and thus enable simultaneous measurements of multiple species along a line-of-sight. Recent advances of room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications make it possible to be applied for combustion diagnostics based on diode laser absorption spectroscopy. Therefore, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor systems are now appearing for variety of applications. The objectives of this research are to develop new gas sensing system and to verify feasibility of this system. Wavelength modulation spectroscopy has been demonstrated in these experiments and has a bright prospect to this diode laser system.

  • PDF

Hydrogen sensing of Nano thin film and Nanowire structured cupric oxide deposited on SWNTs substrate: A comparison

  • Hoa, Nguyen Duc;Quy, Nguyen Van;O, Dong-Hun;Wei, Li;Jeong, Hyeok;Kim, Do-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.52.1-52.1
    • /
    • 2009
  • Cupric oxide (CuO) is a p-type semiconductor with band gap of ~1.7 eV and reported to be suitable for catalysis, lithium-copper oxide electrochemical cells, and gas sensors applications. The nanoparticles, plates and nanowires of CuO were found sensing to NO2, H2S and CO. In this work, we report about the comparison about hydrogen sensing of nano thin film and nanowires structured CuO deposited on single-walled carbon nanotubes (SWNTs). The thin film and nanowires are synthesized by deposition of Cu on different substrate followed by oxidation process. Nano thin films of CuO are deposited on thermally oxidized silicon substrate, whereas nanowires are synthesized by using a porous thin film of SWNTs as substrate. The hydrogen sensing properties of synthesized materials are investigated. The results showed that nanowires cupric oxide deposited on SWNTs showed higher sensitivity to hydrogen than those of nano thin film CuO did.

  • PDF

Fabrication of Optical Sheet for LED Lighting with Integrated Environment Monitoring Sensors (환경모니터링 센서가 집적된 LED 조명용 광학시트 제작)

  • Choi, Yong Joon;Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.35-39
    • /
    • 2013
  • In this paper, we developed an optical sheet for LED lighting with integrated $CO_2$ gas and temperature sensor which can monitor at the indoor environment. The optical sheet for LED lighting is fabricated through PMMA(Polymethyl methacrylate) injection process using mold. This research enables to fabricate the reflective sheet, light-guide plate and the prism sheet in a optical sheet. The fabricated sheet demonstrates higher intensity of optical efficiency compared with single-sided sheets. The $CO_2$ sensor was fabricated using NDIR(NON-Dispersive Infrared) method and it has $0.0235mV/V{\cdot}PPM$ sensitivity. The temperature sensor was fabricated using RTD(Resistance temperature detector) method and it has $0.563{\Omega}/^{\circ}C $sensitivity.

Discrimination of Sesame Oils from Imported Seeds and Their Blended Ones Using Electronic-Nose System (수입 참깨로 착유된 브랜드별 참기름의 전자코를 이용한 향 구분 및 혼합참기름의 판별연구)

  • Shin, Jung-Ah;Lee, Ki-Teak
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.856-860
    • /
    • 2005
  • Electronic-nose system was used to discriminate commercial sesame oils (A-F) extracted from imported seeds. Response (delta $R_{gas}/R_{air}$) of sensors gained from electronic nose was analyzed by principal component analysis (PCA). Flavor pattern of sesame oil A was similar to those of sesame oils B, C, and D. Sesame oils blended with corn oil at the ratio of 95:5, 90:10 and 80:20% (sesame oil/corn oil, w/w) could be discriminated from ouch genuine sesame oil.

Properties of ITO Transparent Conducting Film by DC Magnetron Sputtering Method (DC 마그네트론 스퍼터법에 의한 ITO 투명전도막 특성)

  • Park, Kang-Il;Kim, Byung-Sub;Lim, Dong-Gun;Park, Gi-Yub;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.95-98
    • /
    • 2003
  • Tin doped indium oxide(ITO) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure and deposition time on the electrical, optical and morphological properties were investigated experimentally. ITO films with the optimum growth conditions showed resistivity of $2.36{\times}10^{-4}(\Omega}-cm$ and transmittance of 86.28% for a film 680nm thick in the wavelength range of the visible spectrum.

  • PDF

The evaluation of error due to flame in the measurement using phase doppler anemometry (위상도플러 유속계를 이용한 계측에 있어서의 화염에 기인한 오차의 평가)

  • Yang, Young-Joon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.313-321
    • /
    • 2005
  • Spray combustion has been used in many industrial fields, for instance, such as diesel engines, gas turbines and industrial furnaces, and furthermore various measurement techniques have been applied to elucidate the phenomenon of spray combustion. In order to measure simultaneously the droplet velocity and the droplet size of spray, phase doppler anemometry (PDA) was frequently used in spray combustion. However, the measurement error is occurred due to existence of flame, which is considered as influencing the precision of measurement. Therefore, the purpose of this study is experimentally to conduct the systematic evaluation on the measurement error when PDA measurement is applied to combustion field.

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Development of a Contact Type Temperature Sensor Using Single Crystal Silicon Thermopile (단결정 실리콘 써모파일을 이용한 접촉형 온도센서 개발)

  • Lee, Young-Tae;Lee, You-Na;Lee, Wang-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.369-373
    • /
    • 2013
  • In this paper, we developed contact type temperature sensor with single crystal silicon strip thermopile. This sensor consists of 15 p-type single crystal silicon strips, 17 n-types and contact electrodes on silicon dioxide silicon membrane. The result of electromotive force measuring showed very good characteristic as $15.18mV/^{\circ}C$ when temperature difference between the two ends of the thermopile occurs by applying thermal contact on the thermopile which was fabricated with silicon strip of $200{\mu}m$ length, $20{\mu}m$ width, $1{\mu}m$ thickness.