• Title/Summary/Keyword: Gas Reaction Control

Search Result 222, Processing Time 0.036 seconds

Controller Design and Integrated Performance Tests on Nitrogen-Gas Reaction Control System of KSLV-I (나로호 질소가스 추력기시스템 자세제어기 설계 및 종합성능시험)

  • Sun, Byung-Chan;Park, Yong-Kyu;Oh, Choong-Suk;Roh, Woong-Rae
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.195-207
    • /
    • 2012
  • This paper deals with attitude controller design and integrated performance tests on the nitrogen gas reaction control system of KSLV-I. Some major factors which are necessarily required in designing a stabilizing controller of reaction control system are investigated, and the corresponding equations are given. Experimental configurations and test conditions for system level integrated performance tests of the KSLV-I nitrogen gas reaction control system are summarized. It is shown that, based on the experimental data, operational performances of nitrogen gas reaction control system can be analyzed in terms of gas consumption, thrusting force, time delay, and specific impulse. It is also shown that a conformance of the controller to flight can be evaluated. Finally the onboard controller of KSLV-I reaction control system is shown to perform normally with enough stability margin via the first flight test result.

Empirical Study on Stereotype for Burner-Control Relationship of Four-Stove Gas Range for Koreans

  • Kee, Do-Hyung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.463-467
    • /
    • 2012
  • This study aims to empirically investigate population stereotype of burner-control linkage of four-stove gas range for Koreans. Background: The previous studies' results for gas range stereotypes were different depending upon methods adopted, i.e., whether using questionnaires, computer simulation or physical models. It is known that the physical model experiment should not be methodologically replaced by the computer simulation or paper-and-pencil tests. Stereotype of gas range for Koreans was surveyed based on questionnaires, but has not been dealt with by using physical models. Method: An experiment was conducted to investigate stereotype of four-burner gas range, in which 32 subjects participated and a real gas range available in the market was bought and used. Four types of burner-control linkage were used as independent variable, and reaction time as dependent variable. Results: ANOVA revealed that four types of burner-control linkage and subjects' gender were not significant on reaction time. Duncan's multiple range test showed that reaction times for type III was significantly lower than those for the other three types of burner-control linkage(${\alpha}$=0.05). Conclusion: It is concluded based on the results of this study that stereotype of gas range for Koreans is type III. This is in agreement with results of existing studies using questionnaire survey, while different from those based on physical models. Application: The results of this study would be useful as an ergonomic guideline when designing gas ranges or similar equipments for minimizing operation errors.

Development of the Gas Charging Simulator for Reaction Control System of KSLV-I (KSLV-I RCS 충전모사 시스템 개발)

  • Jeon, Sang-Woon;Jung, Seul;Kim, Ji-Hun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 2009
  • KSLV(Korea Space Launch Vehicle)-I is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low-Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by cold gas thruster system using nitrogen gas. To verify the flow rate of the gas charging system and to prepare a nitrogen gas charging scenario, the development of a gas charging simulator for RCS(Reaction Control System) is required. This paper describes the orifice design, development, and test of the gas charging simulator for RCS of KSLV-I.

  • PDF

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

A Study on the Reaction Force Characteristics of the Gas Spring for the Automotive (자동차용 가스 스프링의 반력 특성에 관한 연구)

  • Lee, Choon Tae
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • A gas spring provides support force for lifting, positioning, lowering, and counterbalancing weights. It offers a wide range of reaction force with a flat force characteristic, simple mounting, compact size, speed controlled damping, and cushioned end motion. The most common usage is as a support on a horizontally hinged automotive tail gate. However, its versatility and ease of use has been applied in many other industrial applications ranging from office equipment to off-road vehicles. The cylinder of a gas spring is filled with compressed nitrogen gas, which is applied with equal pressure on both sides of the piston. The surface area of the rod side of the piston is smaller than the opposite side, producing a pushing force. The magnitude of the reaction force is determined by the cross-sectional area of the piston rod and the internal pressure inside the cylinder. The reaction force is influenced by many design parameters such as initial chamber volume, diameter ratio, etc. In this paper, we investigated the reaction force characteristics and carried out parameter sensitivity analysis for the design parameters of a gas spring.

The Analysis and Control of Compressed Gas Discharging System (압축가스 방출 유압시스템 해석 및 제어)

  • 장웅락;김정관;한명철;정찬희;박인기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.458-462
    • /
    • 2004
  • The hydraulic system for discharging compressed gas is composed of compressor tank, proportional flow control servo valve, expulsion spool valve and discharging tube. Purpose of this study is to control of expulsion spool valve. First, we analyzed the hydraulic system. The flow control servo valve is modeled as a 2nd order transfer function and friction force of the expulsion spool valve is modeled as nonlinear model with stribeck effect. However, it is difficult to include the flow reaction force in modeling. So, we exchanged from the simplified flow reaction force of the compressed gas affection into the flow analysis code written in FORTRAN code. Our simulation of the oil pressure system for discharging gas used MATLAB/Simulink. So, we realized 'Level -2 S-Function Fortran' to cooperate for MATLAB/Simulink and FORTRAN code. PD controller is selected to control in this system. Simulation results show that with given conditions the controllers give a good tracking performance.

  • PDF

Prediction of Thermal Expansion Coefficients using the Second Phase Fraction and Void of Al-AlN Composites Manufactured by Gas Reaction Method (가스반응법으로 제작된 Al-ALN 복합재의 제 2상 분율과 기공에 따른 열팽창계수 예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.41-47
    • /
    • 2019
  • The advent of highly integrated, high-power electronics requires low a coefficient of thermal expansion performance to prevent delamination between the heat dissipation material and substrate. This paper reports a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the thermal expansion coefficients of Al-AlN composite materials. We obtained numerical equivalent property values by using finite element analysis and compared the values with theoretical formulas. Al-AlN should become the optimal composite material when the proportion of the reinforcing phase is approximately 0.45.

Steam Gasification Kinetics of Sawdust Char at High Temperature (톱밥 촤의 고온 수증기 가스화 특성)

  • Roh, Seon Ah;Yun, Jin Han;Keel, Sang In;Min, Tai Jin;Lee, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.821-825
    • /
    • 2014
  • Steam gasification of sawdust char was performed in a thermobalance reactor at high temperature. Gasification temperature was changed from $850^{\circ}C$ to $1400^{\circ}C$ and steam partial pressure was 0.3, 0.5 and 0.7 atm. Three models of gas-solid reaction were applied to the reaction kinetics analysis and modified volumetric model was an appropriate model. Reaction control regime and diffusion control regime were distinct depending on the temperature. Apparent activation energy and pre-exponential factors for both of the regimes were evaluated and the effects of steam partial pressure were examined. $H_2$ concentration in the produced gas was two times higher than that of CO due to the gasification accompanying by the water gas shift reaction.

A Study on the Generating feature of Hydrogen Oxygen Gas Using Pulse Power Supply (펄스전원장치를 이용한 수산화 가스 발생 특성 연구)

  • Yang S. H.;Kim K. H.;Jun Y. S.;Mok H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.89-93
    • /
    • 2002
  • Hydrogen - Oxygen gas has obtained from water electrolysis reaction. It is mixed gas havingconstant volume ratio 2:1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. This gas has betterristics in the field of economy, efficiency of energy, and environmental intimacy than used both of acetylene gas and LPG for gas welding machin. So nowdays many studies of Water-Electrolyzed gas are progressed, and commercially used as a source of thermal energy for gas welding In the industry. For Water-Electrolyzed Source, it was used diode rectifier or SCR rectifier for get DC source. This method which is not looking to improve a source for impossible current control or voltage and limited control intervals. In this paper, it was relized and designed in source of pulse type for complementing existing-DC source type, also by experiment it was acquired producting characteristics of Hydrogen -Oxygen Gas through feature of source

  • PDF

A Study on Brown Gas Generator with Instantaneous Source Power Control (순시전원제어에 의한 수산화가스 발생장치에 관한 연구)

  • Jeon, Yoon-Seok;Lee, Sang-Yong;Mok, Hyung-Soo;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1093-1095
    • /
    • 2003
  • The mixed gas of Hydrogen and Oxygen has obtained from water electrolysis reaction. It has constant volume ratio 2 : 1 Hydrogen and Oxygen, and it is used as a source of thermal energy by combustion reaction. In this paper, Brown Gas Generator with Instantaneous source power control method is designed and relationship between brown gas quantities, efficiency and power condition is studied.

  • PDF