• Title/Summary/Keyword: Gas Pressure Sintering (GPS)

Search Result 10, Processing Time 0.027 seconds

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Conditions

  • Kim, Sung-Ho;Lee, Soo-Wohn;Park, Yong-Kap
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2000
  • Si$_3$N$_4$powder with 2 wt% $Al_2$O$_3$and 6 wt% $Y_2$O$_3$additives was sintered by the gas pressure sintering (GPS) technique. The unlubricated wear behavior depending on sintering conditions such as sintering temperature, pressure, and sintering time was investigated. When the sintering temperature and time increased, the larger elongated grains were formed and the microstructural heterogeneity increased. When sintering pressure increased, grain growth, however, was impeded. Also, the wear properties depended on microstructure and friction coefficient were related to grain size. Based on the experimental results, the wear properties were associated with initial friction coefficients as well as mechanical properties including fracture toughness and flexural strength.

  • PDF

A Study on Machinability of Silicon Nitride Ball Sintered by Various Gas Pressure Sintering(GPS) Conditions (가스압 소결조건에 따른 질화규소볼의 가공성에 대한 연구)

  • 이수완;김성호;정용선
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.115-122
    • /
    • 1998
  • The effect of sintering conditions on the sinterability for silicon nitride has been studied by many in-vestigators. However the effect of sintering conditions on the machinability which is the major barrier to the field applications of the ceramic components has not been fully studied. In this study the sintering con-ditions such as temperature gas pressure and time in silicon nitride were varied. The physical and mechan-ical properties of the gas pressure sintered (GPS) silicon nitride were measured. The optimum mi-crostructure of silicon nitride with the excellent machinability was investigated by MFG(magnetic-fluid grinding) technique. An attempt was made to figure out how the mechanical properties influence upon the machinability of silicon nitride ball.

  • PDF

Effects of the Addition of $La_2O_3$ on Mechanical Properties and Machinability of $Si_3N_4$ Ball

  • Sang Yang Lee;Sung Ho Kim;Soo Wohn Lee
    • The Korean Journal of Ceramics
    • /
    • v.6 no.4
    • /
    • pp.364-369
    • /
    • 2000
  • Silicon nitride with adding La$_2$O$_3$ was sintered by gas pressure sintering (GPS) technique at $1950^{\circ}C$, in $N_2$ gas at 3 MPa, for 2h. Mechanical properties such as hardness, flexural strength, and fracture toughness were determined as a function of the GPS holding time and the contents of La$_2$O$_3$ in silicon nitride. Also machinability of silicon nitride ball with various GPS holding time and amount of La$_2$O$_3$ was evaluated by magnetic fluid grinding (MFG) method. In this study it was found that machinability was influenced significantly with La$_2$O$_3$ contents. However, the different GPS holding time did not affect the machinability very much.

  • PDF

Effects of gas pressure sintering (GPS) conditions on the mechanical properties of silicon nitride (가스압 소결(GPS) 조건이 질화규소의 기계적 특성에 미치는 영향)

  • 이수완;김성호;정용선
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.619-625
    • /
    • 1997
  • $Si_3N_4$ powder with 2 wt% $Al_2O_3$ and 6 wt% $Y_2O_3$additives was gas pressure sintered (GPS). Characterization of the mechanical properties was compared with sintering conditions (temperature, pressure, time). Based on experimental result , the optimal condition of gas pressure sintering was found at $1900^{\circ}C$, 3 MPa for 1 hour. It is assumed that mechanical properties were degraded due to the grain coasening effects with increasing temperature or holding time. However, the grain size was decreased with increasing pressure, resulted in better strength, but lower fracture toughness. Present results suggested that optimization of processing parameters was impotant for better mechanical properties of $Si_3N_4$.

  • PDF

High Temperature Erosion Properties of Silicon Nitride Fabricated by GPS and HP Method (GPS와 HP법으로 제조된 질화규소의 고온 Erosion 특성)

  • 최현주;안정욱;임대순;박동수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.304-309
    • /
    • 2000
  • Si$_3$N$_4$-6wt%Y$_2$O$_3$-lwt%Al$_2$O$_3$was prepared by hot pressed and gas pressure sintering to investigate the effect of microstructure on erosion behaviors. Hardness and fracture toughness were measured with prepared specimens to study the high temperature erosion properties. A gas blast type erosion tester was used In examine erosion behavior of the specimens up to 700$^{\circ}C$. In case of GPS silicon nitride, the erosion rate increases up to 500$^{\circ}C$ and decreases over 500$^{\circ}C$. Maximum erosion rate was observed at 300$^{\circ}C$ for HP silicon nitride. The principal factors affecting the high temperature erosive wear of brittle materials are largely dependent on high temperature properties of grain boundaries.

  • PDF

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Time (질화규소의 가스압 소결 (GPS) 시간에 따른 마모거동)

  • Lee, Su-Wan;Kim, Seong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • $Si_3N_4$ powder with 2wt% $Al_2O_3$ and 6wt% $Y_2O_3$ additives was sintered by gas pressure sintering (GPS) technique. The variations in the unlubricated wear behavior depending on sintering time were compared. Tribological properties depending on sintering time are associated with fracture toughness as well as flexural strength of materials. When increasing the sintering time, the larger elongated grains were formed as a result of exaggerated grain growth. As the fracture toughness and flexural strength decreased, the wear volume increased. On the basis of these experimental results, the unlubricated wear properties of silicon nitride were found to be governed mostly by both the fracture toughness and the flexural strength of the material.

  • PDF

Densification and Mechanical Properties of Silicon Nitride Containing Lu2O3-SiO2 Additives (Lu2O3-SiO2계 소결조제를 포함하는 Silicon Nitride의 소결 특성 및 기계적 거동)

  • Lee, Sea-Hoon;Jo, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.384-389
    • /
    • 2011
  • Gas pressure sintering (GPS) of reaction bonded silicon nitride (RBSN) was performed using $Lu_2O_3-SiO_2$ additive and the properties were compared with those of specimens prepared using high purity $Si_3N_4$ powder. The relative density of RBSN and compacted $Si_3N_4$ powder were 68.9 and 47.1%, and total linear shrinkage after sintering at $1900^{\circ}C$ were 14.8 and 42.9%, respectively. High nitrogen partial pressure (5MPa) was required during sintering at $1900^{\circ}C$ in order to prevent the decomposition of the nitride and to promote the formation of SiC. The relative density and 4-point bending strength of RBSN and $Si_3N_4$ powder compact were 97.7%, 954MPa and 98.2%, 792MPa, respectively, after sintering at $1900^{\circ}C$. The sintered RBSN also showed high fracture toughness of 9.2MPam$^{1/2}$.

A Study on Silicon Nitride Based Ceramic Cutting Tool Materials

  • Park, Dong-Soo
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.78-86
    • /
    • 1995
  • The silicon nitride based ceramic cutting tool materials have been fabricated by gas pressure sintering (GPS) or hot pressing (HP). Their mechanical properties were measured and the effect of the fabrication variables on the properties were examined. Also, effect of adding TiN or TiC particulates on the mechanical properties of the silicon nitride ceramics were investigated. Ceramic cutting tools (ISO 120408) were made of the sintered bodies. Cutting performance test were performed on either conventional or NC lathe. The workpieces were grey cast iron, hardened alloy steel (AISI 4140, HRc>60) and Ni-based superalloy (Inconel 718). The results showed that fabrication variables, namely, sintering temperature and time, exerted a strong influence on the microstincture and mechanical properties of the sintered body, which, however, did not make much difference in wear resistance of the tools. High hardness of the tool containing TiC particulates exhibited good cutting performance. Extensive crater wear was observed on both monolithic and TiN-containing silicon nitride tools after cutting the hardened alloy steel. Inconel 718 was extremely difficult to cut by the current cutting tools.

Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder - Effects on the Sinterability and Mechanical Properties

  • Lee, Sea-Hoon;Cho, Chun-Rae;Park, Young-Jo;Ko, Jae-Woong;Kim, Hai-Doo;Lin, Hua-Tay;Becher, Paul
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain $Lu_2O_3-SiO_2$ additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at $1850^{\circ}C$ through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at $1950^{\circ}C$. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine $Si_3N_4$ particles after nitridation and sintering at and above $1600^{\circ}C$. The amount of residual $SiO_2$ within the specimens was not strongly affected by adding fine Si powder because most of the $SiO_2$ layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and $8.0MPa{\cdot}m^{1/2}$, respectively.

Monochromatic Amber Light Emitting Diode with YAG and CaAlSiN3 Phosphor in Glass for Automotive Applications

  • Lee, Jeong Woo;Cha, Jae Min;Kim, Jinmo;Lee, Hee Chul;Yoon, Chang-Bun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Monochromatic amber phosphor in glasses (PiGs) for automotive LED applications were fabricated with $YAG:Ce^{3+}$, $CaAlSiN_3:Eu^{2+}$ phosphors and Pb-free silicate glass. After synthesis and thickness-thinning process, PiGs were mounted on high-power blue LED to make monochromatic amber LEDs. PiGs were simple mixtures of 566 nm yellow YAG, 615 nm red $CaAlSiN_3:Eu^{2+}$ phosphor and transparent glass frit. The powders were uniaxially pressed and treated again through CIP (cold isostatic pressing) at 200 MPa for 20 min to increase packing density. After conventional thermal treatment at $550^{\circ}C$ for 30 min, PiGs were applied by using GPS (gas pressure sintering) to obtain a fully dense PiG plate. As the phosphor content increased, the density of the sintered body decreased and PiGs containing 30 wt% phosphor had full sintered density. Changes in photoluminescence spectra and color coordination were investigated by varying the ratio of $YAG/CaAlSiN_3$ and the thickness of the plates. Considering the optical spectrum and color coordinates, PiG plates with $240{\mu}m$ thickness showed a color purity of 98% and a wavelength of about 605 nm. Plates exhibit suitable optical characteristics as amber light-converting material for automotive LED applications.