• Title/Summary/Keyword: Gas Penetration

검색결과 330건 처리시간 0.021초

Dimethyl Ether(DME)의 증발과 거시적 분무 특성 (Macroscopic Characteristics of Evaporating Dimethyl Ether(DME) Spray)

  • 유준;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.58-64
    • /
    • 2003
  • Dimethyl Ether(DME) has been considered as one of the most attractive alternative fuels for compression ignition engine. Its main advantage in diesel engine application is high efficiency of diesel cycle with soot free combustion though conventional fuel injection system has to be modified due to the physical properties of DME. Experimental study of DME and conventional diesel spray employing a common-rail type fuel injection system with a 5-hole sac type injector was performed in a constant volume vessel pressurized by nitrogen gas. Spray cone angles and penetrations of the DME spray were characterized and compared with those of diesel. For evaluation of the evaporating characteristics of the DME, shadowgraphy technique employing an Ar-ion laser and an ICCD camera was adopted. Tip of the DME spray was formed in mushroom-like shape at atmospheric chamber pressure, which disappeared in higher chamber pressure. Spray tip penetration and spray cone angle of the DME became similar to those of diesel under 3MPa of chamber pressure. Higher injection pressure provided wider vapor phase area while it decreased with higher chamber pressure condition.

신재생에너지 보급량 예측을 위한 시스템다이내믹스 모델 개발 (The System Dynamics Model Development for Forecasting the Capacity of Renewables)

  • 김현실;고경호;안남성;조병옥
    • 한국시스템다이내믹스연구
    • /
    • 제7권2호
    • /
    • pp.35-56
    • /
    • 2006
  • Korea is implementing strong regulatory derives such as Feed in Tariff to provide incentives for renewable energy developers. But if the government is planning to increase the renewable capacity with only "Price policy" not considering the investors behavior in the competitive electricity market, the policy would be failed. It is necessary system thinking and simulation model analysis to decide government's incentive goal. This study is focusing on the assesment of the competitiveness of renewable energy with the current Feed in Tariff incentives compared to the traditional energy source, specially coal and gas. The simulation results show that the market penetration of renewable energy with the current Feed-in-Tariff level is about 60-70% of the government goal under condition that the solar energy and fuel cell are assumed to provide the whole capacity set in the governmental goal. If the contribution from solar and fuel cell is lower than planned, the total penetration of renewable energy will be dropped more. Notably, Wind power turned out to be proved only 10% of government goal because of its low availability.

  • PDF

Mechanical Properties and Durability of Asphalt Emulsion-Modified Cement Mortars

  • Song Hun;Do Jeong-Yun;Soh Yang-Seob
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.467-472
    • /
    • 2005
  • Asphalt emulsion is manufactured by the emulsification of asphalt, and is considered as an energy-saving, ecologically safe material because it does not need any heating processes with gas emission and fire hazard in its use. This study is concerned with evaluating the feasibility of the use of an asphalt emulsion as a poly-meric admixture. Asphalt-modified mortars using an experimentally manufactured asphalt emulsion were prepared with various polymer-cement ratios, and tested far the mechanical properties such as strengths and adhesion and the properties related to durability such as water absorption, permeation, carbonation and chloride ion penetration. As a result, the waterproofness, carbonation resistance and chloride ion penetration resistance of the asphalt-modified mortars were markedly improved with an increase in the polymer-cement ratio, but their compressive strength and adhesion to mortar substrates were reduced with increasing polymer-cement ratio. Therefore, it is recommended to control their polymer-cement ratio to be $10\%$ or lower in their practical applications. Further study to improve their compressive strength and adhesion is needed.

맞대기 V-그루브 이음 초층 용접에서 최적의 용접조건 선정 (Selection of Optimal Welding Condition in Root-pass Welding of V-groove Butt Joint)

  • 윤석철;김재웅
    • Journal of Welding and Joining
    • /
    • 제27권1호
    • /
    • pp.95-101
    • /
    • 2009
  • In case of manufacturing the high quality welds or pipeline, the full penetration weld has to be made along the weld joint. Thus the root pass welding is very important and has to be selected carefully. In this study, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. In the experiments, the target values of the back bead width and the height are 6mm and zero respectively for the V-grooved butt weld joint of 8mm thickness mild steel. The optimal welding conditions could predict the back bead profile(bead width and height) as 6.003mm and -0.003mm. From a series of welding test, it was revealed that a uniform and full penetration weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

고온.고압 환경에서 가열평판에 충돌하는 디젤분무의 특성 (Characteristics of Impinging Diesel Spray on the Heated Flat Wall in High Temperature and High Pressure Environments)

  • 임경훈;이봉수;김종현;구자예
    • 대한기계학회논문집B
    • /
    • 제25권5호
    • /
    • pp.627-633
    • /
    • 2001
  • Characteristics of a diesel spray impingement with the variation of ambient temperature, wall temperature and ambient pressure were investigated through shadowgraphy method by using high speed camera. The radial penetration of spray was increased with ambient temperature and wall temperature. It is resulted from the decrease of ambient gas density caused by the increase of temperature. The height of spray was also increased with ambient temperature and wall temperature, because the height of stagnate region is noticeably increased, although height of wall jet vortex is decreased. At the same ambient pressure, the area ratio of impinging spray of room temperature environment to high temperature environment was increased, as the temperature difference between room temperature and high temperature increases. And the increment of area ratio was higher at low ambient pressure than high ambient pressure.

디젤기관 연료분무의 분열 현상에 대한 수치해석적 연구 (A Numerical Study on the Break-up of the Fuel Spray in Diesel Engine)

  • 양희천;최영기;유홍선
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.8-22
    • /
    • 1995
  • Three dimensional numerical study of non-evaporating and evaporating spray characteristics was performed in a quiescent and motoring condition of direct injection diesel engine. The calculation parameter was breakup model. The breakup models used were Reitz & Diwakar model and TAB model. The modified k-${\varepsilon}$ turbulence model considering the compressibility effect due to the compression and expansion of piston was used. The calculation results of the spray tip penetration and tip velocity using the TAB model showed similar trends comparing with the experimental data. Although the evaporation rate was not nearly affected with the breakup model at the higher injection pressure, in the low injection case, the evaporation rate result using the TAB model became higher than that of R&D model. The evaporation rate was increased with the injection pressure due to the vigorous interaction with the gas field.

  • PDF

오스테나이트계 304 스테인리스강의 Nd:YAG 레이저 맞대기 용접특성 (Butt Welding Characteristics of Austenitic 304 Stainless Steel Using a Continuous Wave Nd:YAG Laser Beam)

  • 유영태;오용석;신호준;임기건
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.165-173
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameters such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar plates, etc. The following conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

연속파형 Nd:YAG 레이저를 이용한 인코넬 600 합금의 맞대기 용접 특성 연구 (Study of Welding Characteristics of Inconel 600 Alloy using a Continuous Wave Nd:YAG Laser Beam)

  • 송성욱;유영태;신호준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1154-1159
    • /
    • 2004
  • Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much faster than those involved in conventional arc welding processes, leading to a rather small weld zone. Experiments are performed for Inconel 600 plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between plate and plate, etc. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/ aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power . Welding characteristics of austienite Inconel 600 using a continuous wave Nd:YAG laser are experimentally investigated. This paper describes the weld ability of inconel 600 for machine structural use by Nd:YAG laser.

  • PDF

GMA 용접공정에서 공정변수 선정을 위한 민감도 분석에 관한 연구 (A Study on Sensitivity Analysis for Selecting the Process Parameters in GMA Welding Processes)

  • 김일수;심지연;김인주;김학형
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.30-35
    • /
    • 2008
  • As the quality of a weld feint is strongly influenced by process parameters during the welding process, an intelligent algorithms that can predict the bead geometry and shape to accomplish the desired mechanical properties of the weldment should be developed. This paper focuses on the development of mathematical models fur the selection of process parameters and the prediction of bead geometry(bead width, bead height and penetration) in robotic GMA(Gas Metal Arc) welding. Factorial design can be employed as a guide for optimization of process parameters. Three factors were incorporated into the factorial model: arc current, welding voltage and welding speed. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters. The results obtained show that developed mathematical models can be applied to estimate the effectiveness of process parameters for a given bead geometry, and a change of process parameters affects the bead width and bead height more strongly than penetration relatively.

Air horizontal jets into quiescent water

  • Weichao Li ;Zhaoming Meng;Jianchuang Sun;Weihua Cai ;Yandong Hou
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2011-2017
    • /
    • 2023
  • Gas submerged jet is an outstanding thermohydraulic phenomenon in pool scrubbing of fission products during a severe nuclear accident. Experiments were performed on the hydraulic characteristics in the ranges of air mass flux 0.1-1400 kg/m2s and nozzle diameter 10-80 mm. The results showed that the dependence of inlet pressure on the mass flux follows a power law in subsonic jets and a linear law in sonic jets. The effect of nozzle submerged depth was negligible. The isolated bubbling regime, continuous bubbling regime, transition regime, and jetting regime were observed in turn, as the mass flux increased. In the bubbling regime and jetting regime, the air volume fraction distribution was approximately symmetric in space. Themelis model could capture the jet trajectory well. In the transition regime, the air volume fraction distribution loses symmetry due to the bifurcated secondary plume. The Li correlation and Themelis model showed sufficient accuracy for the prediction of jet penetration length.