• Title/Summary/Keyword: Gas Leakage

Search Result 724, Processing Time 0.023 seconds

Optimum Design of a Non-Destructive Testing System to Maximize Magnetic Flux Leakage

  • Park, G.S;Jang, P.W;Rho, Y.W
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • This paper describes the design method of a magnetic system to maximize the magnetic flux leakage (MFL) in a non-destructive testing (NDT) system. The defect signals in a MFL type NDT system mainly depend on the change of the magnetic leakage flux in the region of a defect. The characteristics of the B-H curves are analysed and a design method to define the operating point on B-H curves for maximum leakage is performed. The computed MFL signal by a nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG, the traveling detector unit in gas pipe, in an 8 inch test tube with defects. The rhombic defects could be successfully identified from the defect signals.

  • PDF

A NUMERICAL SIMULATION OF HYDROGEN DIFFUSION FOR THE HYDROGEN LEAKAGE FROM FCV IN UNDERGROUND PARKING LOT (지하주차장 내 수소연료 자동차의 수소 누설로 인한 수소 확산에 대한 수치해석 연구)

  • Choi, J.;Hur, N.;Lee, E.D.;Lee, K.B.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.477-482
    • /
    • 2011
  • In the present study, the diffusion process of hydrogen leaking from a FCV (Fuel Cell Vehicle) in an underground parking lot was analyzed by numerical simulations in order to assess the risk of a leakage accident. The temporal and spatial changes of the hydrogen concentration as well as the flammable region in the parking lot were predicted numerically. The effects of the leakage flow rate and an additional ventilation fan were investigated to evaluate the ventilation performance in the parking lot to relieve the accumulation of the leaked hydrogen gas. The present numerical analysis can provide useful information such as the distribution of the leaked hydrogen concentration for safety of various hydrogen applications.

  • PDF

A Study on Installation of Carbon Monoxide Detector in a Building (건축물내 일산화탄소 경보기 설치에 관한 연구)

  • Kang, Seung-Kyu;Choi, Kyung-Suhk;Oh, Jeong-Seok
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2008.04a
    • /
    • pp.217-222
    • /
    • 2008
  • In the last five years, 45 people died and 104 were wounded because of carbon monoxide poisoning accident. CO poisoning accident is higher than any other gas accident in the rate of deaths/incidents. Most of these CO poisoning accidents were caused by defective exhaust tube in the old gas boiler and multi-use facility. In this study, the spread of CO gas released from leakage hole of exhaust tube was analyzed by concentration measuring test. CO gas leaked form exhaust tube in a building was highest concentrated near the ceiling. Through these experiments, the reasonable installation location of CO alarm was made certain and suggested.

  • PDF

A experimental study on the sensor response at hydrogen leakage in a residential fuel cell system (가정용 연료전지 시스템 내부 수소 누출 시 센서 응답 특성에 관한 연구)

  • Kim, Young-Doo;Chung, Tae-Yong;Shin, Dong-Hoon;Nam, Jin-Hyun;Kim, Young-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2009-2014
    • /
    • 2007
  • Hydrogen is a fuel of fuel cell system, which has powerful explosion possibility. Hence, the fuel cell system needs safety evaluation to prevent risk of hydrogen leakage. We use a actual size chamber of a common fuel cell module to analyze hydrogen. Hydrogen injection holes are located in lower part of the chamber in order to simulated hydrogen leakage. The hydrogen sensor can detect range of 0${\sim}$4%. Since the hydrogen gas, of which leaked amount is controled by MFC, are injected at the bottom holes, the transient sensor signals are measured. At a condition of 10cc/s of hydrogen leakage, the sensor detects hydrogen leakage after 22sec and there is also several seconds of time delay depending on the position of the sensor. This experimental data can be applied for the design of the hydrogen detection system and ventilation system of a residential fuel cell system.

  • PDF

A new method fast measure cryogenic vessel heat leakage

  • LI, Zheng-Qing;LI, Xiao-Jin;LIU, Mo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.24-28
    • /
    • 2020
  • Heat leakage is an important parameter to reflect heat insulated performance of cryogenic vessel. According to the current standard requirements, it needs to measure the daily evaporation rate to indicate heat leakage. The test needs-over 24h after cryogenic vessel in heat equilibrium as standard required, therefore test efficiency is poor and new efficient method is required to cut test time. First of all, the volume of instantaneous evaporated gas and heat leakage are calculated by the current standard corresponding to the maximum allowable daily evaporation rate of cryogenic vessel. Depending on the relationship between real daily evaporation rate and maximum allowable daily evaporation rate of cryogenic vessel, we designed a new test method based on the pressure changes over time in cryogenic vessel to determine whether its heat insulated performance meets requirements or not. Secondly, the heat transfer process was analyzed in measurement of cryogenic vessel, and the heat transfer equations of whole system were established. Finally, the test was completed in four hours; meanwhile the heat leakage and daily evaporation rate of cryogenic vessel are calculated basing on test data.

A Study on Safety Assessment of Hydrogen Station (수소충전소의 안전성 평가 연구)

  • PYO, DON-YOUNG;KIM, YANG-HWA;LIM, OCK-TAECK
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.6
    • /
    • pp.499-504
    • /
    • 2019
  • Due to the rapid spread and low minimum ignition energy of hydrogen, rupture is highly likely to cause fire, explosion and major accidents. The self-ignition of high-pressure hydrogen is highly likely to ignite immediately when it leaks from an open space, resulting in jet fire. Results of the diffusion and leakage simulation show that jet effect occurs from the leakage source to a certain distance. And at the end of location, the vapor cloud explosion can be occurred due to the formation of hydrogen vapor clouds by built-up. In the result, it is important that depending on the time of ignition, a jet fire or a vapor cloud explosion may occur. Therefore, it is necessary to take into account jet effect by location of leakage source and establish a damage minimizing plan for the possible jet fire or vapor cloud explosion. And it is required to any kind of measurements such as an interlock system to prevent hydrogen leakage or minimize the amount of leakage when detecting leakage of gas.

Estimation of Accident Probability for Dynamic Risk Assessment (동적 위험 분석을 위한 사고확률 추정 방법에 관한 연구)

  • Byeong-Cheol Park;Chae-Og Lim;In-Hyuk Nam;Sung-Chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.2_2
    • /
    • pp.315-325
    • /
    • 2023
  • Recently, various dynamic risk analysis methods have been suggested for estimating the risk index by predicting the possibility of accidents and damage. It is necessary to maintain and support the safety system for responding to accidents by continuously updating the probability of accidents and the results of accidents, which are quantitative standards of ship risk. In this study, when a LNG leakage that may occur in the LN G Fuel Gas Supply System (FGSS) room during LN G bunkering operation, a reliability physical model was prepared by the change in monitoring data as physical parameters to estimate the accident probability. The scenario in which LNG leakage occur were configured with FT (Fault Tree), and the coefficient of the covariate model and Weibull distribution was estimated based on the monitoring data. The possibility of an LNG leakage, which is the top event of FT, was confirmed by changes in time and monitoring data. A method for estimating the LNG leakage based on the reliability physical analysis is proposed, which supports fast decision-making by identifying the potential LNG leakage at the accident.

A Study on the Improvement of Emergency Block and Diffusion Prevention System for Hazardous Chemicals Leakage (화학물질 누출에 따른 긴급 확산 방재시스템 개선 방안 연구)

  • Lee, Deok-Jae;Yun, Jeong Hyeon;Yoo, Byung-Tae
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.5
    • /
    • pp.89-99
    • /
    • 2018
  • In the case of medium and small-sized businesses handling hazardous chemicals, emergency disaster prevention by workers, rather than a disaster prevention system using a safety device equipped with an automation system in case of a leak accident, is highly likely to occur. In order to solve these limitations, in this study investigated an emergency disaster prevention system that can be easily removed and adhered to the expected point of leakage according to the occurrence frequency of the leak during the chemical handling process.

Test Results of the Mechanical Face Seal for a Turbopump

  • Kwak, Hyun-D.;Jeon, Seong-Min;Kim, Jin-Han
    • KSTLE International Journal
    • /
    • v.8 no.1
    • /
    • pp.11-15
    • /
    • 2007
  • The mechanical face seal has been tested in Korea Aerospace Research Institute (KARl) for turbopump applications. In the turbopump under current development, the mechanical face seal is installed between fuel pump and turbine to prevent a mixture of fuel and combustion gas. Generally the mechanical face seal in turbopump is exposed to severe environment because of great rotational speed, high temperature of combustion gas and high level of pressure difference. Thus a series of tests were performed to guarantee the reliability of mechanical face seal by means of simulating the practical operating conditions. The tests were conducted up to 20,000 rpm with pressure difference of 800 kPa and temperature of 620 K In addition several carbon materials for mechanical face seal were conducted to the tests to compare the life time. During the tests, the performance against leakage was monitored and the carbon wear was also measured to estimate the life of a mechanical face seal The results show that the leakage flow rates of mechanical face seal is ignorable compared to an overall flow rate of fuel pump. The carbon material which has the finest wear resistance was found during the tests. Lastly no critical failure of mechanical face seal was found during the tests and the reliability of mechanical face seal for turbopump was successfully proved.

Study for Fire Examples of LPG Leakage Including Fuel hose, Injector and Pressure Regulator Connector in Vehicle (자동차 연료호스, 인젝터 및 압력조절기 연결부에서 LP 가스 누출에 의한 화재사례 고찰)

  • Lee, Il Kwon;Kook, Chang Hoo;Suh, Moon Won;Jung, Dong Hwa
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.8-13
    • /
    • 2013
  • The purpose of this paper is to study for fire example by fuel leakage in LPG Vehicle. At first example, the car was repaired the fuel line that was connected with pressure hose between fuel regulator and injector in engine. But the service man was not very tighten with regular torque. At a result, the gas leaked on hot parts of engine. It verified the production of fire by engine heat. At second example, when the repair man, after replacement the injector, inserted the injector in a assembling part of it, he didn't the transform condition of fixing part. Therefore, the tearing phenomenon of O ring producted the controlled leakage of fuel by the injector deflection. It found the fact that the fuel leaked with gap of O ring. At third example. the fuel-cut solenoid valve was lined with pressure regulator unit. But the service man didn't throughly certify the leaked work of connected parts after repaired it. As a result, it certified the fire by engine heating leaked liquefied petroleum gas. Therefore it have to minimize the fire production that the driver should do no problem to throughly manage the fuel system.