• Title/Summary/Keyword: Gas Force

Search Result 778, Processing Time 0.029 seconds

Characterization of Shape Memory Alloy Springs by Beat Treatment Condition (열처리 조건에 따른 형상기억합금 스프링의 특성변화)

  • Kim, Myung-Soon;Na, Seung-Woo;Lee, Sang-Hoon;Lee, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1985-1987
    • /
    • 1996
  • Shape memory alloy springs have been fabricated and annealed at $400^{\circ}C$, $450^{\circ}C$ and $500^{\circ}C$ in atmosphere and in nitrogen gas. The optimal heat treatment condition in view of maximum generated force has been decided by the iso-thermal test with variation of annealing condition. Experimental results show that the heat treatment with high temperature in nitrogen gas is desirable for high generated force and can be used for the design of shape memory alloy springs.

  • PDF

Probing Tidal Field Strength of Virgo Cluster Galaxies

  • Yoon, Hye-In;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.74.2-74.2
    • /
    • 2011
  • We probe the tidal perturbation parameter f of Virgo cluster galaxies. The goal is to measure the strength of tidal fields around individual galaxies to get better understanding gravitational processes that can affect galaxy evolution in the cluster environment. The f-value is defined as a logarithmic ratio between the net internal gravitational force within a galaxy and the external tidal force exerted by a neighboring galaxy. Hence, it provides one way to quantify the tidal field strength of galaxies, in particular, due to galaxy neighbors. In this study, we determine f-values of the VIVA galaxies, samples of the VLA Imaging study of Virgo galaxies in Atomic gas, using the Extended Virgo Cluster Catalog (EVCC) which is the most complete Virgo cluster catalog to date. With diagnostics based on the HI gas and R-band morphologies, we discuss the impact of the tidal fields on the evolution of the VIVA sample. Also, we compare the tidal field strength to the intra cluster medium (ICM) pressure for each sample galaxy to pin down environmental processes at work.

  • PDF

Numerical Study on the Air-Cushion Unit for Transportation of Large-Sized Glass Plate

  • Jun, Hyun-Joo;Kim, Kwang-Sun;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.59-64
    • /
    • 2007
  • Non-contact transportation of a large-sized glass plate using air cushion for the vertical sputtering system of liquid crystal display (LCD) panel was considered. The objective of the study was to design an air pad unit which was composed of multiple injection and exhaust holes and mass flow supplying pipe. The gas was injected through multiple small holes to maintain the force for levitating glass plate. After hitting the plate, the air was vented through exhaust holes. Complex flow field and resulting pressure distribution on the glass surface were numerically studied to design the air injection pad. The exhaust hole size was varied to obtain evenly distributed pressure distribution at fixed diameter of the injection hole. Considering the force for levitating glass plate, the diameter of the exhaust hole of 30 to 40 times of the gas injection hole was recommended.

  • PDF

Separation of Magnetic/non-Magnetic Particles by an Electromagnetic Fluidized Bed (전자석 유동층에 의한 자성/비자성 입자의 분리)

  • 김용하;서인국
    • Resources Recycling
    • /
    • v.6 no.1
    • /
    • pp.17-22
    • /
    • 1997
  • An electromagnetic fluidized bed was proposed for the continuous separation of magnetic particles from the fine a admixtures with nonHmagnetic particles. The effects of operating variables on the magnetic fraction in the separated p particles were examined, including superficial gas velocity, mixing fraction of magnetic particles (= 100-mixing fraction of n non-magnetic particles) in the admixture, and electric current supplied to the electwmagnet. It was found that the s separation was possible when a magnetic force formed by the electromagnets works on the magnetic particles over the hydrodynamic force caused by a gas stream for fluidizing the fine admixture.

  • PDF

Flow Analysis of Bubble and Liquid Phase by Vertical Upward Gas Injection (수직상향 기체 주입에 따른 기포 및 액상의 유동분석)

  • 서동표;오율권
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.9
    • /
    • pp.727-732
    • /
    • 2003
  • In the present study, a PIV measurement and image processing technique were applied in order to investigate the flow characteristics in the gas injected liquid bath. The circulation of liquid was induced by upward bubble flow. Due to the centrifugal force, the flow was well developed near both wall sides than in the center of a bath. The vortex flow irregularly repeated generation and disappearance which helped to accelerate the mixing process. The bubble rise velocity in the bottom region was relatively lower than in the upper region because the energy generated by bubbles' behavior in the region near the nozzle was almost converted into kinetic energy But bubble rise velocity increases with the increase of the axial distance since kinetic energy of rising bubbles is added to buoyancy force. In conclusion, the flow increased bubble rise velocity and the flow of the bottom region became more active.

TWO-DIMENSIONAL SHOCK WAVE DIFFREACTION IN DROPPET-LADEN GAS MEDIA (액적을 동반한 기체에서 이차원 충격파 회절)

  • Yeom, G.S.;Chang, K.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.362-364
    • /
    • 2010
  • Shock wave interaction with droplet-gas medium is investigated in this paper. In the present computation, the shock wave is initially started in a pure gas and reflected from the wedge to interact with the droplet-ridden gas flows. We used the compressible two-fluid two-phase model that is solved by the two-fluid version of the HLL scheme. The interfacial drag force and heat transfer were included to model the interaction between continuous and dispersed phases. The parametric effect of void fraction on the shock wave reflection in the two-phase media was investigated.

  • PDF

Rotordynamic and Leakage Analysis for Stepped-Labyrinth Gas Seal (압축기용 계단식 래버린스 실의 누설 및 동특성해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1084-1089
    • /
    • 2000
  • The basic equations are derived for the analysis of a stepped labyrinth gas seal which are generally used in high performance compressors, gas turbines, and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the stepped labyrinth gas seal. The leakage and rotordynamic characteristic results of the stepped labyrinth gas seal are presented and compared with Scharrer's theoretical analysis using Blasius' wall-friction-factor formula.

  • PDF

Leakage and Rotordynamic Analysis for Staggered-Labyrinth Gas Seal (엇갈린 래버린스 실의 누설량 및 동특성 해석)

  • Ha, Tae-Woong
    • Tribology and Lubricants
    • /
    • v.18 no.1
    • /
    • pp.24-33
    • /
    • 2002
  • The basic equations are derived for the analysis of a staggered labyrinth gas seal which are generally used in high performance compressors and steam turbines. The Bulk-flow is assumed for a single cavity control volume and the flow is assumed to be completely turbulent in circumferential direction. Moody's wall-friction-factor formula is used for the calculation of wall shear stresses in the single cavity control volume. For the reaction force developed by the seal, linearized zeroth-order and first-order perturbation equations are developed for small motion about a centered position. Integration of the resultant first-order pressure distribution along and around the seal defines the rotordynamic coefficients of the staggered labyrinth gas seal. Theoretical results of leakage and rotordynamic characteristics for the staggered labyrinth gas seal are compared with those of the plain seal and see-through labyrinth seal.

Supersonic Axisymmetric Minimum Length Nozzle Conception at High Temperature with Application for Air

  • Zebbiche, Toufik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.1-30
    • /
    • 2008
  • When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect; its state equation remains always valid, except, it is named in more by calorically imperfect gas. The aim of this work is to trace the profiles of the supersonic axisymmetric Minimum Length Nozzle to have a uniform and parallel flow at the exit section, when the stagnation temperature is taken into account, lower than the dissociation threshold of the molecules, and to have for each exit Mach number and stagnation temperature shape of nozzle. The method of characteristics is used with the algorithm of the second order finite differences method. The form of the nozzle has a point of deflection and an initial angle of expansion. The comparison is made with the calorically perfect gas. The application is for air.

Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles

  • Ly, Tan Nhiem;Park, Sangkwon
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.417-428
    • /
    • 2018
  • In this study, we fabricated hierarchically self-assembled thin films composed of graphene oxide (GO) sheets and gold nanoparticles (Au NPs) using the Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques and investigated their gas-sensing performance. First, a thermally oxidized silicon wafer ($Si/SiO_2$) was hydrophobized by depositing the LB films of cadmium arachidate. Thin films of ligand-capped Au NPs and GO sheets of the appropriate size were then sequentially transferred onto the hydrophobic silicon wafer using the LB and the LS techniques, respectively. Several different films were prepared by varying the ligand type, film composition, and surface pressure of the spread monolayer at the air/water interface. Their structures were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and their gas-sensing performance for $NH_3$ and $CO_2$ was assessed. The thin films of dodecanethiol-capped Au NPs and medium-sized GO sheets had a better hierarchical structure with higher uniformity and exhibited better gas-sensing performance.