• 제목/요약/키워드: Garch Models

검색결과 149건 처리시간 0.02초

금융 및 특수시계열 모형의 조망 (A recent overview on financial and special time series models)

  • 황선영
    • 응용통계연구
    • /
    • 제29권1호
    • /
    • pp.1-12
    • /
    • 2016
  • 금융시계열은 일반 시계열과는 차별적으로 stylized facts로 불리는 특징을 가지고 있다. 이 특징들은 급첨 성질, 비정규분포, 변동성 집중 및 비대칭성을 포함한다. 이러한 특징들을 설명하기 위해서는 기존의 선형 ARMA 모형에서 벗어난 특수한 모형이 필요하게 되었다. 본 논문은 변동성 모형인 GARCH 형태의 모형을 중심으로 특수 금융시계열 모형들을 소개하고 연관된 통계적 이슈들에 대해 가능한 최근 연구를 중심으로 폭 넓게 조망하고 있다.

A GARCH-MIDAS approach to modelling stock returns

  • Ezekiel NN Nortey;Ruben Agbeli;Godwin Debrah;Theophilus Ansah-Narh;Edmund Fosu Agyemang
    • Communications for Statistical Applications and Methods
    • /
    • 제31권5호
    • /
    • pp.535-556
    • /
    • 2024
  • Measuring stock market volatility and its determinants is critical for stock market participants, as volatility spillover effects affect corporate performance. This study adopted a novel approach to analysing and implementing GARCH-MIDAS modelling methods. The classical GARCH as a benchmark and the univariate GARCH-MIDAS framework are the GARCH family models whose forecasting outcomes are examined. The outcome of GARCH-MIDAS analyses suggests that inflation, interest rate, exchange rate, and oil price are significant determinants of the volatility of the Johannesburg Stock Market All Share Index. While for Nigeria, the volatility reacts significantly to the exchange rate and oil price. Furthermore, inflation, exchange rate, interest rate, and oil price significantly influence Ghanaian equity volatility, especially for the long-term volatility component. The significant shock of the oil price and exchange rate to volatility is present in all three markets using the generalized autoregressive conditional heteroscedastic-mixed data sampling (GARCH-MIDAS) framework. The GARCH-MIDAS, with a powerful fusion of the GARCH model's volatility-capturing capabilities and the MIDAS approach's ability to handle mixed-frequency data, predicts the volatility for all variables better than the traditional GARCH framework. Incorporating these two techniques provides an innovative and comprehensive approach to modelling stock returns, making it an extremely useful tool for researchers, financial analysts, and investors.

벡터오차수정모형과 다변량 GARCH 모형을 이용한 코스피200 선물의 헷지성과 분석 (Hedging effectiveness of KOSPI200 index futures through VECM-CC-GARCH model)

  • 권동안;이태욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1449-1466
    • /
    • 2014
  • 본 논문에서는 기초자산의 선물을 이용하는 헷지 전략을 연구하였다. 최적헷지비율을 구하기 위한 전통적인 방법으로 회귀분석이 사용되고 있으나, 현물과 선물 사이에 존재하는 장기균형관계와 금융 시계열 자료의 분산에 존재하는 변동성 군집현상 등의 특징을 설명하지 못하는 한계가 있다. 이를 극복하기 위해 코스피200 지수와 선물 자료에 대해 평균모형으로 벡터오차수정모형을 적합하고, 분산모형으로 다변량 GARCH 모형을 적합하여 분산-공분산 행렬을 추정하고, 이를 통해 최적헷지비율을 구하는 방법을 연구하였다. 실증분석 결과에 의하면 시장이 안정적일 때에는 회귀분석을 사용해도 큰 차이가 없지만, 시장이 불안정해지고 변동성이 커지는 구간에서는 벡터오차수정모형과 다변량 GARCH 모형을 이용하는 경우에 헷지성과가 월등히 좋아지는 결과를 얻을 수 있었다.

분계점 비대칭과 멱변환 특징을 가진 비정상-변동성 모형 (Volatility-nonstationary GARCH(1,1) models featuring threshold-asymmetry and power transformation)

  • 최선우;황선영;이성덕
    • 응용통계연구
    • /
    • 제33권6호
    • /
    • pp.713-722
    • /
    • 2020
  • 본 논문에서는 금융시계열의 특징인 비대칭 변동성을 연구하고 있다. 멱변환을 동시에 고려한 멱변환-비대칭 GARCH 모형을 소개하고 있다. 변동성이 비정상인 모형을 다루고 있으며 오차항으로 표준정규분포와 더불어 표준화 t-분포도 고려하여 변동성 정상/비정상 조건을 제시하고 있다. 미국 주가 시계열인 다우지수 적용사례를 예시하였다.

The Performance of Time Series Models to Forecast Short-Term Electricity Demand

  • Park, W.G.;Kim, S.
    • Communications for Statistical Applications and Methods
    • /
    • 제19권6호
    • /
    • pp.869-876
    • /
    • 2012
  • In this paper, we applied seasonal time series models such as ARIMA, FARIMA, AR-GARCH and Holt-Winters in consideration of seasonality to forecast short-term electricity demand data. The results for performance evaluation on the time series models show that seasonal FARIMA and seasonal Holt-Winters models perform adequately under the criterion of Mean Absolute Percentage Error(MAPE).

멱변환 이분산성 시계열 모형을 이용한 인터넷 트래픽 예측 기법 연구 (Internet Traffic Forecasting Using Power Transformation Heteroscadastic Time Series Models)

  • 하명호;김삼용
    • 응용통계연구
    • /
    • 제21권6호
    • /
    • pp.1037-1044
    • /
    • 2008
  • 본 연구에서는 재무시계얼 자료의 변동성을 분석하는데 유용하게 쓰이는 멱변환 시계열 모형을 인터넷 트래픽 자료 특성 분석에 적용하여 효용성을 보이고자 한다. 트래픽의 특성인 장기기억(long memory)특성을 설명하기 위하여 멱변환 GARCH(PGARCH) 모형을 소개하고 기존의 GARCH 모형보다 더 유용함을 시뮬레이션과 실제 인터넷 트래픽 자료에 적합시켜 입증하였다.

Modelling KOSPI200 Data Based on GARCH(1,1) Parameter Change Test

  • Park, Si-Yun;Lee, Sang-Yeol
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.11-16
    • /
    • 2007
  • Since the seminal work of Engle (1982), many researchers and practitioners have developed ARCH-type models to deal with volatility modelling, which, for instance, is crucial to perform the task of derivative pricing, measuring risk, and risk hedging. In this paper, we base the GARCH(1,1) model to analyze the KOSPI200 data, and perform the CUSUM test for detecting parameter changes in the GARCH model. It is shown that the data suffers from a parameter change.

  • PDF

광양항의 수출물동량과 수출액의 변동성 (Volatility of Export Volume and Export Value of Gwangyang Port)

  • 모수원;이광배
    • 한국항만경제학회지
    • /
    • 제31권1호
    • /
    • pp.1-14
    • /
    • 2015
  • 변동성이나 변이계수의 크기와 미치는 효과의 크기가 반드시 비례하는 것은 아니다. 그것은 변동성을 유발하는 요인이나 변동성의 특성에 차이가 있을 수 있기 때문이다. 그런데 광양항의 수출액과 수출량은 밀접한 선형관계를 가지나 두 변수의 변동률은 낮은 상관관계를 보인다. 이것은 두 변수의 변동성의 특성이 다르다는 것을 의미한다. 이에 물동량과 수출액의 예측하지 못한 요인의 밀도함수가 정규분포 형태를 보이지 않을 뿐만 아니라 부호편의검정, 규모편의검정, 결합검정, Ljung-Box Q 통계량 등이 GARCH와 같은 변동성 모형을 이용하여 분석을 실시하는 것이 합리적임을 보인다. 물동량 변동성에서는 대칭적 GARCH모형이 아닌 비대칭 GARCH모형이 적합한데 비해 수출액 변동성에서는 GARCH모형이 적합함을 보인다. 뉴스충격곡선을 도출하여 물동량의 경우 GJR모형이 EGARCH모형에 비해 나쁜 뉴스에 대한 분산을 과대평가하나 좋은 뉴스에 대한 분산을 과소평가하는 경향이 있음을 밝힌다.

일반화 자기회귀 조건부 이분산 모형을 이용한 한국프로야구 관중수의 예측 (Forecasting attendance in the Korean professional baseball league using GARCH models)

  • 이장택;방소영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1041-1049
    • /
    • 2010
  • 한국프로야구에서 관중수는 프로야구 발전을 위한 가장 큰 수입원이며 프로야구팀의 관심사이므로 수요예측 모형이 있다면 프로야구구단들은 관중유치 전략을 세우는데 도움이 될 것이다. 이러한 이유로 본 연구에서는 한국프로야구 관중수를 예측하는 모형을 제안하고자 하며 제한된 여건 속에서 관중수에 영향을 미치는 이용 가능한 대부분의 변수들을 고려하였다. 종속변수는 로그관중수로 두고 다양한 독립변수와 오차항의 분산을 등분산, 조건부 이분산을 가정한 여러 가지 일반화 자기회귀 모형, 오차항의 분포가 t분포를 따른다는 가정을 이용한 일반화 자기회귀 조건부 이분산 모형들을 서로 비교하였는데, 그 결과 고려된 모형 중에서는 t분포를 가정한 일반화 자기회귀 조건부 이분산 모형이 가장 예측력이 뛰어났다.

Numerical study on Jarque-Bera normality test for innovations of ARMA-GARCH models

  • Lee, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권2호
    • /
    • pp.453-458
    • /
    • 2009
  • In this paper, we consider Jarque-Bera (JB) normality test for the innovations of ARMA-GARCH models. In financial applications, JB test based on the residuals are routinely used for the normality of ARMA-GARCH innovations without a justification. However, the validity of JB test should be justified in advance of the actual practice (Lee et al., 2009). Through the simulation study, it is found that the validity of JB test depends on the shape of test statistic. Specifically, when the constant term is involved in ARMA model, a certain type of residual based JB test produces severe size distortions.

  • PDF